
 unamay@csail.mit.edu

Open questions Future vision

Current progress

Project Overview

 Dataset – need for larger, curated, labeled dataset
that can be used for PowerShell malware detection
and classification

 AST engineering – revealed shortcomings when
applied to STRING obfuscations

 De-obfuscation - ML projects would require data
preprocessing component where de-obfuscation
might be essential

#AIRW2019

Representation Learning for Code Malware

 PowerShell – common target for cyberadversaries; can be
obfuscated and executed from memory

 Obfuscations – different code but same functionality; defeat text-
based approaches

 Abstract Syntax Tree (AST) – abstracts away code’s specific
details while retaining control flow and content-related information

 Firstname Una-May
 Lastname O’Reilly

MIT-IBM
Watson AI Lab

GOAL: Learn a representation for Powershell code malware. Modeled using a Tree-Structured
Variational Autoencoder which are robust to program tree and token-level obfuscations

 Variational Autoencoder (VAE) – generative
unsupervised method that can be used to learn
representation for program trees

Observations
 The learned representations are robust against AST and TOKEN but not STRING obfuscations
 Further investigation lead to the fact that STRING obfuscations transform the code in a very specific
manner where the code is converted to a string and is passed to IEX command, similar to the eval
procedure in most programming languages. This resulted in very similar ASTs of very few nodes, which
explains the failure of the STRING obfuscations observed both qualitatively and quantitatively.
Relevant links
1. Daniel Bohannon 2018. Invoke Obfuscation v1.8. https://github.com/danielbohannon/Invoke-Obfuscation
2. Jeff White 2017. Pulling Back the Curtains on Encoded Command PowerShell Attacks. https://researchcenter.paloaltonetworks.com/2017/03/unit42-pulling-back-the-curtains-
on-encodedcommand-powershell-attacks

 Stronger baseline – define a baseline that uses
more complex features

 Supervised learning – try out supervised
representation learning methods

 Adversarial learning – use obfuscated samples
during training

 Other languages - explore languages other than
PowerShell, (C, Python etc)

 Three types of obfuscations: AST,
TOKEN and STRING; available from
online tool Invoke-Obfuscation1

 Dataset – obtained from Palo Alto
Networks2; originally 4079
datapoints, 469 after preprocessing

 Train Random Forest RB with hand-
engineered features

 Train Random Forest RE with
learned representations from tree-
structured VAE

 Compare performance on both
natural and obfuscated dataset

Sanja Simonovikj, Abdullah Al-Dujaili, Shashank Srikant,
Erik Hemberg, Una-May O’Reilly ALFA, CSAIL, MIT

	Slide 1

