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Abstract. We explore how to give Genetic Programming (GP) a head
start to synthesize a programming problem. Our method uses a related
problem and introduces a schedule that directs GP to solve the related
problem first either fully or to some extent first, or at the same time.
In addition, if the related problem’s solutions are written by students
or evolved by GP, we explore the extent to which initializing the GP
population with some of these solutions provides a head start. We find
that having a population solve one programming problem before working
to solve a related programming problem helps to a greater extent as the
targeted problems and the intermediate problems themselves are selected
to be more challenging.
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1 Introduction

It is possible to learn programming on one’s own but following in a course with a
teacher can make the learning easier. That is, teachers often give their students a
head start on new problems and, prior to a problem set, they introduce examples
of problems related to it. They may also provide a solution that a student only
needs to extend or re-factor, with modest effort, to solve the problem, all of
which provides support for learning. This notion of moving from one problem
to a related one is conceptually similar to what, in Machine Learning(ML),
is called multi-task learning [30]. A teacher often introduces small, modular
solutions that can be easily combined in different ways with others. This head
start allows them to show how to compose them in different combinations to
solve larger problems(tasks) that share some subsolutions in common. This is
similar to curriculum learning [4] in ML which starts with a small task and then
introduces of a multi-stage curriculum.

We are interested in giving Genetic Programming Used for Program Synthe-
sis (GP) a head start. Our desire is to improve the capacity of GP to apply
existing problem solving knowledge to solve a set of similar problems. Specifi-
cally, we study how GP can, “within a run”, solve multiple similar problems,
whether in sequence or concurrently. This would involve only changing input-
output requirements and priming the population with some solutions similar to
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the target problem. It would reduce reliance on manual intervention, external
libraries or restarts as required by executing multiple runs. While the benefits
of a head start seem obvious, it is not immediately clear how to best provide
it to GP. We can draw options from a number of observations. First, instructor
programs ready for modification could seed the GP’s initial population. These
could be starting points for GP closer to a solution to the problem or more
suited to easily reach a solution. Second, we could provide elements of a human
curriculum for programming. We could take two consecutive problems A and B
from a programming course, and try and learn one then the other (B after A and
A after B), learn them simultaneously (A and B at same time because they share
common subproblems and can share subsolutions) or a new problem that is a
combination of problems A and B. This set of problems would extend the cur-
rent GP program synthesis benchmark suite. Currently its problems have been
selected for different criteria such as solely having input/output examples, mul-
tiple solutions, no synthesis method bias and that are representative of student
programming problems [10] (see Section 2 for related work).

To proceed with these options, we selected two similar Python programming
problems from an actual programming course, specifically MITx 6.00.1x Intro-
duction to computer science and programming in Python (6.00.1x ), a MOOC
offered on the EdX platform. We modify a grammatical GP system [15], to al-
low GP to solve multiple programming problems in one run (see Section 3). The
modifications are: a) a schedule to change one programming problem to another
(by changing the input-output examples), b) initialization of the population with
existing solutions to a programming problem. We seed the population with ran-
dom (normal GP initialization) programs, human coded solutions, and programs
generated from previous runs of GP. Our intent is to forgo inventing specialized
operators or fitness measures.

We pose the following research questions (see Section 4 and 5) for GP: 1) How
does the quality of a solution or time to identifying a solution improve when GP
switches to the problem “mid-stream”, i.e. in the process of solving a similar
problem? By how much does the timing of the switch impact performance?
2) How does the quality of a solution or time to identifying a solution improve
when GP ’s population is initialized with solutions to similar problems? What
proportion of similar problem solutions helps? In the context of head starts, we
will use human judgment to select problems that are similar in terms of requiring
the same program conceptual knowledge.

The key contributions (see Section Section 6) of this paper are: 1) Intro-
duction of a new program synthesis problem presented as a pair that is similar
according to a programming curriculum. 2) Development of schedule for multi
programming problem synthesis. 3) Analysis of head start concept based on
multiple similar programming problems, programming problem schedules and
initialization.
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2 Related work

A head start for GP is intrinsically related to other attempts in GP that re-
purpose solutions. In GP the seeding of initial population as a means of headstart
has been studied for e.g. software improvement, controllers, symbolic regression
and AI planning [2, 28, 20, 32] Another thread of work is multi-task learning. It
aims to solve multiple programming problems (tasks) simultaneously to improve
on the performance of solving each programming problem independently. The
assumption is that there exists some subsolutions (information) in common for
solving related tasks [34]. This introduces a relation between modularity and
multi-task learning, since the reuse of sub-tasks is promoted by modularity. In
GP there have been multiple studies regarding modularity, as reported in this
survey [8], though without explicit focus on multiple tasks.

While not all this work is on program synthesis, connections exist, e.g transfer
learning of genetic programming instruction sets and libraries [9, 24]. Some recent
work on program synthesis with GP also considers multiple functions, string
library functions and vector problems [5, 27, 25]. Previous multi-task work in
GP has focused on other domains for example, multi task visual learning, robot
controllers, symbolic regression and Boolean problems [14, 16, 19, 18, 26, 13, 21].
Furthermore, a head start for GP is also related to non-stationary problems,
due to the repurposing of the population. In non-stationary problems GP is
presented with a continuum of different requirements [6] whereas when looking
for a head start GP pivots explicitly between explicitly different problems.

GP program synthesis has used various techniques, see [17], and also consid-
ered specific programming approaches, such as recursion, lambda abstractions
and reflection [22, 1, 33, 31]. An important milestone for GP is the program syn-
thesis benchmark suite of 29 problems, selected from sources teaching introduc-
tory computer science programming [11]. We propose a new paired problem setup
that could be introduced to the suite. We differentiate from others by investigat-
ing similar-problem solution initialization of the population, the switching from
solving one problem to another, and a combination of the problem pair.

3 Method

In this section we first present a formalization of program synthesis and synthe-
sis of multiple problems. Then we show how we proceed in a minimalist fashion
by introducing two simple modifications that give GP a head start. We out-
line a variety of design options this allows. We end by reviewing Grammatical
Evolution [23] which our GP framework uses.

3.1 Formalization

A formulation of program synthesis is as an optimization problem: find a pro-
gram (solution) q from a domain Q that minimizes combined error on a set of
input-output cases d = {(x0, y0), . . . , (xn, yn)}, x ∈ X, y ∈ Y , with q : X → Y .
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Algorithm 1 GP (D, S,DK , Θ) Multi-task GP with domain knowledge
Parameters: D test cases, S programming problem schedule, DK existing so-
lutions as knowledge base, Θ hyper parameters
Return: Population
1: P ← ∅ . Population
2: P ← P∪ initialize(Θ,DK) . Initialize population
3: P ← evaluate(P,Θ, F ) . Evaluate pop fitness
4: for t ∈ [1, . . . , ΘT ] do . Iterate over generations
5: P ′ ← selection(P,Θ) . Select new population
6: P ′ ← variation(P ′, Θ) . Subtree mutation and crossover
7: F ← getProgrammingProblem(S, t,D) . Get the fitness function
8: P ′ ← evaluate(P ′, Θ, F ) . Evaluate population on programming problem
9: P ← replacement(P ′, Θ) . Update population

10: return P . Return final population

Typically, an indicator function measures error on a single case: 1: q(x) 6= y. The
program q can be represented by some language L. There exists a set of pro-
grams q∗ = {q∗0 , . . . , q∗n} that can solve all input-output cases. We can formulate
the program synthesis problem as

arg min
q∈Q

(q(x)− y)

Here we define learning of multiple programs as

arg min
q∈Q

∑
x,y∈D

(q(x)− y)

The data set D is {d0, . . . , dn}, where di has an optimal solutions q∗i . Domain
knowledge is expressed as similar solutions or sub-solutions,D = {qi, . . . , qj}. For
example, initial population head start in this paper is a population of solutions
P = [q0, . . . , qn].

3.2 GP

We use a standard GP progtram synthesis algorithm for initializing with a head
start, evaluating, selecting, varying and replacing multi-programming problem
program synthesis, Algorithm 1. The modifications for a head start are: 1) Injec-
tion of previous program synthesis solutions for initialization, see Alg. 1 line 2.
2) A schedule to change the programming problem that is evaluated.

Scheduling multiple programming problems We design for both serial and parallel
scheduling of multiple program synthesis (Alg. 1 line 7). With a serial schedule
one programming problem is first evaluated and then another. With a parallel
schedule multiple programming problems are evaluated at the same time, this is
done in Alg. 1 line 7. More formally:

Serial One programming problem, qt = q0 is evaluated at generation t (in-
termediate), then another programming problem, qt+1 = q1 is evaluated at gen-
eration t + 1. Fitness score is based on the current programming problem that
is being evaluated, F (qt).
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Parallel Multiple programming problems are evaluated at the same time,
q = [q0, . . . , qn]. Fitness score is the sum of each programming problem fitness
score,

∑
q∈q F (q).

Serial and Parallel Programming problems can be evaluated both in serial
and parallel, qt = [q0] and qt+1 = [q0, . . . , qn]. Fitness score is based on the
current programs that are being evaluated,

∑
q∈qt F (q).

Existing solution initialization Different solutions to programming prob-
lems are seeded into the initial population a) Existing source code(solutions) for
other human student problems, DH b) Existing evolved solutions in the GP rep-
resentation for other program synthesis programming problem, DS c) Randomly
generated programs using the standard GP initialization procedures, R.

Seeding the GP search with existing similar programs (options a and b) is
one way of providing domain knowledge for the program synthesis. Note, this
seeding can be seen as a variant of serial multi programming problem switching,
i.e. the first programming problems have been synthesized to completion and
provides a starting point for the next programming problem.

To initialize with existing programs, we need to parse the codes into the
representation that we use for search. We do this using a grammar. First, we
preprocesses the code and refactors variables and function names to a consistent
naming scheme. Then, we recursively parse a tree representation of the code
depth-first left-to-right and returns a list of integers indicating production choices
(GE genome). The first matching production will be returned. Note, future work
will investigate if there is any search bias in GE from the code parsing.

3.3 Grammatical Evolution

Grammatical Evolution (GE) is a genetic programming algorithm where a Backus
Naur Form (BNF) context free grammar is used in the genotype to phenotype
mapping process [23]. A production rule is defined as a non-terminal left-hand
side, a separator and a list of productions on the right hand side, each produc-
tion contains terminals and/or non-terminals. In GE the probability of selecting
a production from a rule is depends on the number of productions. The gram-
mar is the starting point for a two step sequence to decode a genotype to a
program(phenotype): 1) Genotype to derivation tree: The genotype, an in-
teger sequence, rewrites non-terminals to terminal via the production rules. This
rule production sequence can be represented as a derivation tree. At each step in
the rewriting the integer “gene” determines which production to expand the cur-
rent production rule. The production at the (gene modulo number of productions
in the rule) position is selected. 2) Derivation tree to phenotype/program:
The leaves (terminals) of the derivation tree constitute the sentence (executable
code) that GE can evaluate.

Synthesized candidate programs in GE are evaluated in the same way as in
GP, we provide a grammar as input to Alg. 1, and when initializing the existing
solutions are parsed to a genotype representation. GE’s genotype-phenotype
mapping step raises locality issues [29]. One way to address the lack locality is
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to use variation operators that manipulate subtrees. We chose GE since it can
incorporate domain information and be used with Python.

4 Experiments

First, we present the program synthesis problems and data used for the initial-
ization experiments. Then we present the experimental setup. Finally, we show
the results and discuss them.

4.1 Solutions of Similar Problems

We identify programming problems that are similar according to human experts,
composable into a combined program, and for which we have a corpus of cor-
rect and incorrect human coded solutions. We draw upon MITx Introduction
to computer science and programming in Python (6.00.1x ), a MOOC offered
on the EdX platform [3]. Because they are also from an introductory program-
ming course, they be similar in complexity to the problems in the GP program
synthesis benchmark suite.

The learning design for 6.00.1x assigns problems of progressiv complex-
ity, e.g. Boolean operations, iterators and then combinations of iterators and
Boolean operations. Because their similarity we focus on the first two problems
P1 (count vowels) and P2 (count bob), which check the students’ understand-
ing of control flow. The two problems are similar, they initialize a count variable,
iterate through a string, and add to a total count if some condition was met. We
scraped solution history data from 2016 Term 2 and 2017 Term 1. Here we con-
sider the correct solutions from the 3,485 who earned a certificate. We compared
each solution to a gold standard solution on the basis of keyword frequencies
using Pearson correlation. Most of the correct ones were correlated to the gold
standard [3]. Note that privacy prevents a public release of this data set. We
create a combination of P1 and P2 called Combo, all problems are in Figure 1.

We used the grammar in Figure 2 to both parse and generate solutions. We
expect only a few distinct solutions, since we standardize them for parsing, filter
for correctness, the course provides instructions for solving the problems, and
solutions are available online. There are ≈ 2, 000 solutions for P1 but 2 distinct
solutions after parsing. For P2 there are ≈ 1, 000 solutions and after parsing a
single distinct solution. There are no existing student solutions for Combo, since
we create it for GP. Note, GP copies the solutions in the initial population.

4.2 Experimental Setup

We report program synthesis performance in the same way as [11], in terms of
how many runs out of 100 resulted in one or more programs that solved all the
out-of-sample (test) cases. All other reported values are averages over 100 runs.
We ran all experiments on a cloud (OpenStack) VM with 24 cores, 24GB of RAM
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def count_vowels(s: str) -> int:
"""Assume `s` is a string of lower case characters. Write a program that counts up

the number of vowels contained in the string `s`. Valid vowels are: `'a', 'e', 'i', 'o'`,
and `'u'`. For example, if `s = 'azcbobobegghakl'`, your program should print:

`Number of vowels: 5`
"""
ctr = 0
for i in s:

if i == "a" or i == "i" or i == "o" or i =="e" or i == "u":
ctr = ctr + 1

print("Number of vowels:", ctr)
return ctr

def count_bob(s: str) -> int:
"""Assume `s` is a string of lower case characters. Write a program that prints the

number of times the string `'bob'` occurs in `s`. For example, if `s = 'azcbobobegghakl'`,
then your program should print

`Number of times bob occurs is: 2`
"""
ctr = 0
for i in range(len(s) - 2):

if s[i] == "b" and s[i + 1] == "o" and s[i + 2] == "b":
ctr = ctr + 1

print("Number of times bob occurs is:", ctr)
return ctr

def combo(s: str) -> Tuple[int, int]:
"""Assume `s` is a string of lower case characters. Write a program that prints the

number of vowels and number of times the string `'bob'` occurs in `s`. For example, if `s
= 'azcbobobegghakl'`, then your program should print

```
Number of vowels: 5
Number of times bob occurs is: 2
```
"""
ctr_1 = 0
ctr_2 = 0
for i in range(len(s)):

if i < (len(s) - 2) and s[i] == "b" and s[i + 1] == "o" and s[i + 2] == "b":
ctr_2 = ctr_2 + 1

if s[i] == "a" or s[i] == "i" or s[i] == "o" or s[i] == "e" or s[i] == "u":
ctr_1 = ctr_1 + 1

print("Number of vowels:", ctr_1)
print("Number of times bob occurs is:", ctr_2)
return ctr_1, ctr_2

Fig. 1. Problems P1 (count vowels), P2 (count bob) and Combo (combo) used for
GP. In Python execution of Boolean operators is short-circuited.
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start : initial_assign | "i0 = int(); i1 = int(); s0 = str();
res0 = int(); res1 = int()\n" initial_assign
initial_assign : (int_var equals num "\n" initial_assign)

| (int_var equals num "\n" code)
| (string_var equals "str()\n" initial_assign)

equals : " =" | "=" | "= " | " = "
plusequals : " +=" | " += " | "+=" | "+= "
code : (code statement "\n") | (statement "\n")
statement : assign | compound_stmt
compound_stmt : for | if
assign : int_assign | inc
inc : int_var plusequals int
for : for_iter_string
bool : bool_string | (bool_string bool_op bool)
bool_op : " and "|" or "
bool_string : string_cmp | in_string
in_string : "s0 in " str_tuple
str_tuple : "(" s_or_comma ")"
s_or_comma : string_alpha_low | (string_alpha_low ", " s_or_comma)
if : ("if " bool ":{:\n" code ":}") | ("if (" bool "):{:\n" code ":}")
num : "0"|"1"|"2"
int_var : "i0"|"i1"|"res0"|"res1"
int_assign : int_var "=" int
int : int_var | ("int(" num ".0)") | num
string_var : "in0[i1+" num "]" | "s0" | "in0[i1]"
string_cmp : string_var string_equals string_alpha_low
string_equals : "==" | " == " | "== " | " =="
for_iter_string : ("for s0 in in0:{:\n"if"\n:}")

| ("for i1 in range(len(in0)-"num"):{:\n"if"\n:}")
string_alpha_low : "'b'"|"'a'"|"'e'"|"'i'"|"'o'"|"'u'"

Fig. 2. EBNF grammar for problems P1 , P2 and Combo

using Intel(R) Xeon(R) CPU E5-2450 v2 @ 2.50GHz. Our GP implementation
is based on the PonyGE2 [7, 12].

The set of parameters we use throughout all our experiments is listed in
Table 1. We use subtree crossover on the GE derivation trees [7]. We use novelty
selection since it was shown to be useful in program synthesis with GE [12].
Fitness is the number of correct test cases solved during training [11].

4.3 Experimental Design

For each approach, multiple variants were tested across a range of parameters.
We specify both the programming problem schedule (programming problems
to be solved, and in what order) and the percent of generations to spend on
each programming problem. For initialization schemes, we specify which set of
solutions we initialize the population with, along with the percentage of the
population that is initialized from those solutions. The variants used in the
experiments are described in Table 2. The names in the figures are concatenations
of these. Baseline is solving only one programming problem. All variants use
the same number of fitness evaluations (16,000), regardless if they solve one or
multiple programming problems with GP head start during the run.
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Table 1. Experimental settings for GP

Parameter Value
Generations 200
Population Size (P) 800
Elite size 8
Replacement Generational
Initialization PI grow
Initial genome length 200
Max genome length 500
Max initial tree depth 15
Max tree depth 17
Crossover probability 0.8
Mutate duplicates True

Novelty selection [15]
Novelty archive sample size (C) 100
Novelty tournament size (ω) 6
Novelty function Exponential
Novelty λ Generations/10

Table 2. Experimental variants, columns show the name and a description.

Variant Name Description
Multi programming problem learning

EarlySingleSwitch Change programming problem after 25% of generations have passed
MedSingleSwitch Change programming problem after 50% of generations have passed
LateSingleSwitch Change programming problem after 75% of generations have passed
OneThenTwo Initially optimize for P1 and switch to P2
OneThenBoth Initially optimize for P1 and switch to Combo
TwoThenOne Initially optimize for P2 and switch to P1
TwoThenBoth Initially optimize for P2 and switch to Combo

Initialization Schemes
HalfFromDir Initialize 50% of the population from the given directory of solutions, generate the

rest randomly
AllFromDir Initialize 100% of the population from the given directory of solutions
UserSolutions Infuse population with student-submitted solutions
NonDiverseRandom Infuse population with multiple copies of a single program that doesn’t solve either

programming problem

5 Results

In summary we observe that GP variants that solve multiple programming prob-
lems can improve the quality of the solutions for the more difficult problems.
However, for the simple problem the GP head start gives no benefit. Table 3
outlines the experiments and results. Although the three problems are similar in
structure, they have varying difficulties given our grammar. Figure 3 shows this
difference, the Combo alone is the most difficult, and P1 is more easily solvable
than P2 because there are no requirements on the loop variable.

Sequential programming problem schedules When solving a complex problem,
it can be helpful to search for a problem solution to an intermediate program-
ming problem (a sequential schedule) before solving the complete programming
problem. For solving Combo, useful intermediate programming problems are to
solve each of the P1 and P2 problems individually before moving to solve the
combined problem. With this in mind, we solved multiple programming problem
learning by starting to solve from either P1 or P2 and changing the program-
ming problem to solve Combo at some point throughout the evolution. The
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Table 3. Experimental results. Variants and problem are explained in Table 2. Percent
of 100 runs solving all test cases is in the Solved% column for each variant.

Variant Name Problem Solved%
Baseline

Baseline P1 (Best for P1) 97
Baseline P2 48
Baseline Combo 3

Switching
EarlySingleSwitch TwoThenOne 87
MedSingleSwitch TwoThenOne 83
LateSingleSwitch TwoThenOne 48
EarlySingleSwitch OneThenTwo (Best for P2) 49
MedSingleSwitch OneThenTwo 16
LateSingleSwitch OneThenTwo 4
EarlySingleSwitch OneThenBoth 3
EarlySingleSwitch TwoThenBoth 11
MedSingleSwitch OneThenBoth 1
MedSingleSwitch TwoThenBoth 10
LateSingleSwitch OneThenBoth 2
LateSingleSwitch TwoThenBoth (Best for Combo) 15

Initialization Schemes
UserSolutions, AllFromDir P1 , 84
UserSolutions, HalfFromDir P1 (Best init. P1) 94
NonDiverseRandom, AllFromDir P1 93
NonDiverseRandom, HalfFromDir P1 93
UserSolution AllFromDir P2 37
UserSolution HalfFromDir P2 42
NonDiverseRandom, AllFromDir P2 (Best init. P2) 51
NonDiverseRandom, HalfFromDir P2 45

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

Baseline_SolveOneAlone
Baseline_SolveTwoAlone
Baseline_SolveBothAlone

Fig. 3. Y-axis is the fraction of runs which contained a program that
solved all of the test cases and x-axis is generation. Lines are a single
problem (P1 -Baseline SolveOneAlone, P2 -Baseline SolveTwoAlone, or Combo-
Baseline SolveOneAlone)
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percentage of runs in which at least a single program solved all given test cases
is given in Figure 4. In this plot, each of the runs was given 200 generations to
run. However, they are displayed as being shifted in order to line up the point
at which they started working on the final problem; for example, if a population
started by spending 50 generations on P1 and then switched to spending 150
generations on P2 , then it would be shifted back 50 generations relative to the
other lines, to get a common start point for the second problem.

0 50 100 150 200 250 300 350

0.0

0.2

0.4

0.6

0.8

LateSingleSwitch_TwoThenBoth
EarlySingleSwitch_TwoThenBoth
MedSingleSwitch_TwoThenBoth
Baseline_SolveBothAlone
EarlySingleSwitch_OneThenBoth
LateSingleSwitch_OneThenBoth
MedSingleSwitch_OneThenBoth

Fig. 4. Y-axis is the fraction of runs which contained a program that solved all of the
test cases and x-axis is generation. The start of the lines is shifted in order to line up
the point at which they started working on the final problem. The lines are the multi
programming problem learning experiment, when switching from solving OneThenBoth,
TwoThenBoth and not switching Baseline SolveBothAlone

Populations that spent more time searching for the intermediate problem
(LateSingleSwitch) generally had a higher upward trajectory than those that
spent less time searching for it (EarlySingleSwitch). This effect can be seen in
Figure 5, which shows the number of test cases solved by the best individual in a
run, averaged across all runs for the same problem. A longer time spent searching
for the intermediate programming problem allows a population to solve a higher
number of test cases from Combo earlier, in comparison to those that spent less
time searching on the intermediate programming problem.

Additionally, this experiment revealed that harder problems can sometimes
be a better intermediate signal than easier ones. P1 is an easier problem to
solve for the population than P2 , and Figure 4 shows better performance when
searching for P2 before Combo, as opposed to searching for P1 before Combo.
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0 50 100 150 200 250 300 350
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100 LateSingleSwitch_OneThenBoth
MedSingleSwitch_OneThenBoth
EarlySingleSwitch_OneThenBoth
EarlySingleSwitch_TwoThenBoth
MedSingleSwitch_TwoThenBoth
LateSingleSwitch_TwoThenBoth
Baseline_SolveBothAlone

Fig. 5. Y-axis is the average number of test cases solved by the best individual and
x-axis is the generation. The start of the lines is shifted in order to line up the point
at which they started working on the final problem. Lines are for when switching from
solving OneThenBoth, TwoThenBoth and not switching Baseline SolveBothAlone

Transferring Information from One Programming Problem to Another The two
problems are similar, in that they initialize a count variable, iterate through a
string, and add to a total count if some condition was met. A population that
had previously been optimized for solving P1 could be better equipped to solve
P2 than a population solely focused on P2 from the beginning.

We can see that the effect of searching for a previous programming prob-
lem was different in each case. When going from P2 to P1 in Figure 6, this
intermediate programming problem seemed to produce positive results, as the
population performed better than what it originally would have on the baseline
in one case. Looking at Figure 6, we can see that while too many generations on
a related problem can be harmful, the right amount can be beneficial. E.g. the
MedSwitch and LateSingleSwitch schemes perform worse than the baseline,
the EarlySingleSwitch performed better than the baseline, even though 25%
of the time was spent searching for a different problem.

Initializing with Preexisting Knowledge Because of the similarity in the solutions
to each of the given problems, our hypothesis was that initializing populations
with individuals that solved P1 would be better equipped at solving P2 , and
vice versa, by capturing common statements. None of the runs initialized with
solutions to one problem did any better than the runs in which random initializa-
tion methods were used. Surprisingly, when a single program which solved neither
problem was chosen as a starting point, P2 , NonDiverseRandom, AllFromDir,
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EarlySingleSwitch_OneThenTwo
Baseline_SolveTwoAlone
MedSingleSwitch_OneThenTwo
LateSingleSwitch_OneThenTwo

Fig. 6. Y-axis is the fraction of runs which contained a program that solved all of the
test cases and x-axis is generations. The start of the lines is shifted in order to line
up the point at which they started working on the final problem. Lines are for when
the programming problem was switching from solving OneThenTwo and not switching
Baseline SolveTwoAlone

performance was not hindered. In fact, it even solved the problem in a higher
number of runs than the baseline.

5.1 Discussion

This study attempts to clarify one simple approach to improve GP performance
and investigate the experimental design options for solving multiple program-
ming problems for GP. This leads to a number of limitations in our proof-of-
concept study. First, the human solution data is limited and biased by amount
and diversity of human solutions that are available for programming problems.
Second, we have only investigated a few programming problems, and can thus
not draw any strong conclusions. Another limit is that we use only informal
human judgment of similarity. There exists a body of work in education and
software engineering regarding programming problem similarity that may offer
some help. Finally, another limit is that there is no consensus on curriculum
learning design for humans, so GP learning designers might struggle to specify
a curriculum as well.

It is our aim is to expand the boundaries of expectations regarding what is
provided to GP. Others have questioned why GP starts “from scratch” when
helpful knowledge is available. For example [12] investigated providing domain
knowledge to the programming synthesis task that GP tried to solve. On the basis
of our experiments, it is arguable that giving GP a head start could improve
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GP performance on the more difficult problems in the GP program synthesis
benchmark suite assuming that similar problems could offer a head start.

6 Conclusions and Future Work

We explored transferring information within a single population by solving sepa-
rate but related programming problems, the first two problems of the first MITx
6.00.1x course problem set. Specifically, we explored 1) solution quality from a
transfer between programming problem using a schedule for GP program syn-
thesis to solve a similar programming problem, 2) solution quality when provid-
ing information from similar programming problems during initialization. When
solving the more difficult Combo programming problem with GP, using the P2
problem as an intermediate goal as opposed to the simpler P1 was found to
be beneficial. Additionally, more time spent searching for the intermediate goal
proved to be beneficial. The effects of initializing a population with solutions to
a related problem were unclear.

There are multiple directions for future work. An evaluation of the difficulty
of finding additional problem pairs that set up the head start could be con-
ducted. This could also reveal whether the initial observations around ordering
and problem difficulty hold more generally. Head start also could be expanded to
integrate existing and new work on modularity and reuse in GP. Other metrics
for comparing code similarity will also be investigated.
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