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Abstract

Analyzing neuronal activity in developing neuronal networks can improve our un-
derstanding of neuronal dysfunctions underlying conditions such as Rett syndrome.
Two-photon calcium imaging is used to capture neuronal network activity over time.
This method produces large sets of images that are typically manually analyzed by
skilled neuroscientists. Because this process is both time-consuming and subject to
error, discovery of therapies that ameliorate network dysfunction may be slowed.
We improve an existing, semi-autonomous machine learning pipeline for two-photon
calcium imaging sequence analysis. We introduce to the pipeline neuron detection
methods using supervised learning models, heuristic filtering of pixels for signal ex-
traction, and event detection using deconvolution. With these methods, we improve
neuron detection performance, alter signal-to-noise ratio of extracted calcium signals,
and allow for integration of methods that infer action potential firing underlying these
signals.
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Chapter 1

Introduction

Analyzing neuronal activity in developing neuronal networks can improve our under-

standing of neuronal dysfunctions underlying Rett syndrome [1, 2]. Mutations in the

MECP2 gene have been found to cause these conditions [3]. Differences in network

activity between Mecp2-deficient and wild-type cultures may help in discovering novel

therapies that ameliorate network dysfunction [1]. Two-photon calcium imaging al-

lows for the investigation neuronal network activity. This method produces large sets

of images that are typically manually analyzed by skilled neuroscientists. Because

the process is both time-consuming and subject to error, discovery of novel therapies

that ameliorate network dysfunction may be slowed. Therefore, there is a need for

reliable, automated methods.

Previous work by our group in [4] produced a semi-autonomous machine learn-

ing pipeline for accelerating the analysis of two-photon calcium imaging sequences

("imaging sequences"). The pipeline includes methods for automatically identifying

neurons, signal extraction and processing, event detection, feature extraction, and

analysis. This work produced promising results and provides a base for the overall

pipeline and this work. However, the neuron detection, signal extraction, and event

detection steps needed improvement before the pipeline could be used. Here, we im-

prove this pipeline and make it usable for our group. We incorporate new neuron

detection, signal extraction, and event detection methods to better analyze the large

data sets. The signals outputted from this pipeline can be used for different analyses,
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including the inference of functional connectivity in networks.

This chapter provides brief descriptions on two-photon calcium imaging, the effect

of Mecp2 deficiency on neuronal network function, and the previous pipeline.

1.1 Two-Photon Calcium Imaging

Fluorescence microscopy takes advantage of "fluorescent objects that can be selec-

tively excited and visualized" [5, p.823] [6]. "Two-photon excitation (2PE) laser

scanning microscopy allows for high-resolution and high-sensitivity fluorescence mi-

croscopy in intact neural tissue" [5, p.823] that has "synthetic fluorophores that allow

for labeling of cellular structures" or "aspects of cellular function", such as calcium

ion concentration [5, p.823][7]. 2PE provides several advantages over one-photon tech-

niques [8]. Due to its excitation wavelengths, 2PE microscopy is able to penetrate

tissue better, limit excitation to a small focal volume, and as a result, produce better

signals from detected fluorescent photons [5, p.824][8].

Calcium ions "control key functions in all types of neurons" [9, p.862]. Calcium

indicators can be used "for monitoring the dynamics of cellular calcium signaling",

and imaging calcium in neurons allows for investigation of calcium signals [9, p.862].

Scanning specific laser beams over a specimen generates images of "fluorescence values

acquired for each pixel" [9, p.871][10]. Images collected over time in for cortical cul-

tures act as a time-lapse sequence depicting activity in neurons (described in Chapter

2).

1.2 Effect of Mecp2 Deficiency on Neuronal Net-

works

Mecp2 is a protein that regulates whether genes are turned on or off in brain cells

and plays an important role in brain development[11]. Mutations in the MECP2 gene

have been found to lead to Rett syndrome [3].

The experiments discussed in this work examine the effect of Mecp2 deficiency

18



in a mouse model of Rett syndrome. In mice, males with the mutant Mecp2 gene

(where exons 3 and 4 are deleted) live for up to 60 days [12]. Female mice with a

single healthy copy of Mecp2 survive but start to show symptoms after a few months

[12].

In Mecp2 deficient networks, inhibitory PV cells1 increase the number of bou-

tons projecting onto the soma of excitatory cells in visual cortex, causing reduced

spontaneous firing in vivo [2, p.6][13]. Furthermore, "reduced spontaneous firing in

pyramidal cells is also seen in cortical slices" [2, p.6][14] "and in hippocampal autaptic

neurons cultured in vitro" [2, p.6] [15]. It was found that Mecp2 -deficiency alters the

"maturation of NMDA receptors in two major classes of cortical neurons" [2, p.7][1].

1.3 Prior Work

In this section, we describe our previous research in our group [4] that helped motivate

the research questions of this work. This work produced a pipeline which consists

of neuron detection, signal extraction and processing, neuronal event detection, and

feature extraction and analysis. An overview of this pipeline can be seen in Figure

1-1.

In the neuron detection step, neurons are identified in the two-photon calcium

imaging recordings. Several different unsupervised learning models were implemented

and evaluated. These methods include (1) Threshold, Aggregate, and Contour with

Evolutionary Parameter Optimization, (2) Threshold, Aggregate, and Contour, (3)

Threshold and Contour, (4) Template Matching, (5) Gaussian Threshold, Aggregate,

and Contour, and (5) Genetic Neuron Detection. The Threshold, Aggregate, and

Contour with Evolutionary Parameter Optimization obtained the highest score, with

a mean precision of 94.1% and a mean recall of 58.6%. The Template Matching

method achieved the highest mean recall of 61.2% and the Threshold, Aggregate,

and Contour method achieved the highest mean precision of 96.0%.

In the signal extraction and processing step, signal intensity from the regions

1parvalbuminpositive interneurons [2]
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detected as neurons are extracted over the sequence of images to produce signals.

The signals are then denoised using a Savitzky-Golay filter.

The neuronal event detection step identifies both burst activity and slow oscil-

lations in the signals. Signals of relative fluorescence were used, where the baseline

is a low pass filter of fluorescence. For detecting slow oscillation activity, a Lowess

filter is used as a strict low pass filter. For detecting burst activity, a windowed av-

erage filter is used as a less strict low pass filter. An appropriate threshold is applied

to the resultant signals to identify times of neuronal events. Upon inspection by a

neuroscientist, false negatives for burst activity detection were found to be very rare.

Additionally, it was noted that almost all of the obvious burst activity events were

identified by this method. However, it was found that the rate of false positives was

relatively high.

Next, clusters of similar signals are created to quantify correlations in activity

related to neuronal communication. Cosine similarity was used to measure similarity

between two signals. Signals are then clustered using Density Based Spacial Cluster-

ing Applications with Noise (DBSCAN) clustering.

Finally, features are extracted and analyzed from these clusters of similar sig-

nals. The silhoutte score, number of clusters, size of clusters, proportion unclustered,

proportion in largest cluster along with other features are extracted for each image

sequence. The values obtained for the features are analyzed across the different mouse

genotypes (described in Chapter 2). No significant differences were observed between

the different genotypes.
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1.4 Research Questions

In this work, we both improve steps of the previous pipeline by leveraging new meth-

ods. Given a two-photon calcium imaging sequence, the existing pipeline identifies

neurons in the sequence, extracts signals from the identified regions, detects neuronal

events in the signals, clusters similar signals, and extracts and analyzes features from

the clusters. Our research questions focus on how the existing pipeline can be im-

proved. Specifically, we focus on the neuron detection, signal extraction, and event

detection steps of the pipeline and investigate methods for each.

Research Question 1. In [19], it was noted that neuron detection methods were

constrained to unsupervised learning methods as a training set of labeled neurons

was not available. However, we now have annotated neurons for numerous image

sequences (described in Chapter 2). Therefore, we investigate whether we can im-

prove neuron detection using supervised learning. Specifically, we investigate the

performance of a convolutional neural network.

Research Question 2. [19] also notes that the denoising method sometimes ex-

aggerated noise in signals with very little change in fluorescence, causing false events.

We aim to extract signals that are less noisy and present clearer burst activity events.

We investigate whether using different heuristic filters to extract signals achieves

higher signal-to-noise ratios.

Research Question 3. [19] claims that the rate of false positives was relatively

high for burst activity detection. We investigate an alternate burst activity detection

method that uses deconvolution and investigate whether it achieves better perfor-

mance.

Contributions. In this work, we focus on three parts of the previous pipeline. We

incorporate three-dimensional (3D) images into the neuron detection step and evalu-

ate four different neuron detection methods. These methods include previous methods

that are modified for the 3D images, a supervised learning method using Mask R-CNN

[16], and a combination of these methods. In the signal extraction step, we incorpo-

rate pixel selection methods for signal extraction using different heuristic filters and
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similarity measures. We also investigate an alternative event detection method based

that uses the OASIS algorithm [17] in the event detection step. We evaluate both

neuron detection and event detection against an annotated gold-standard data set.

1.5 Thesis Structure

The remainder of this is organized as follows. Chapter 2 provides an overview of the

Mecp2 data set, including data collection and annotation. In Chapter 3, we describe

and evaluate the methods used for neuron detection. Chapter 4 presents the methods

used for signal extraction from the detected neurons. In Chapter 5, we describe and

evaluate a burst activity detection method using OASIS [17]. Finally, Chapter 6 lists

our conclusions, future work, and clinical implications.
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Chapter 2

Data

2.1 Data Set

The collection of data for this study was performed by by Dr. Susanna Mierau and

her group. The data set used in this work contains 16 10-minute time-lapse images

of 1600 images and corresponding three-dimensional (3D) images of mouse neuronal

cortical cultures. The variations in pixel values over the image sequence represent

fluctuations of intracellular calcium that report neuronal activity. Of the 16 image

sequences, there are eight Mecp2-deficient and eight wild-type cultures. In addition

to these 16 sequences and corresponding 3D images, we have three additional 3D

images for a total of 19 3D images.

2.2 Data Collection

We provide a brief description of the data collection process as described in previous

work that studies the affects of Mecp2 deficiency on mouse neuronal networks [2].

Cultures from the primary cortex are harvested from mouse pups sacrificed on the

day of or one day after birth. The pups may have one of three genotypes: wild-type

(WT), knockout (KO), or heterozygous (Het). Wild-type mice are healthy. KO mice

do not make any functional Mecp2 protein due to an Mecp2 -gene knockout. Het mice

have one functional copy and one altered Mecp2 copy.
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[2, p.10] describes the following procedure for data collection:

The cortex was dissected from the brain and the meninges removed in ice-

cold Krebs solution or DPBS1. The cortices were transferred into chilled

200 𝜇L of papain mixed with 200 𝜇L of DPBS and incubated for 25 min-

utes in a 37 ∘C water bath to begin the process of dissociation. The

reaction was terminated by the addition of 1 mL NB-B27 media contain-

ing 4% fetal bovine serum (FBS). Cells were then manually dissociated

and then centrifuged for 10 minutes with relative centrifugal force (rcf)

of 0.4. Afterwards, the supernatant was removed and the cell pellet was

re-suspended in 350 𝜇L of NB-B27 media. The cell count was estimated

using a hemacytometer and the dissociated cells were plated ... onto ...

coverslips for calcium imaging.

For plating the cells on coverslips [2, p.10-11] describes the following:

The cells were further mixed with NB-B27 media to achieve concentra-

tion of 4.5 * 105 cells in 200 𝜇L. Next, the cells were aliquoted onto glass

coverslips pretreated with poly-D-lysine and laminin (Neuvitro Corpora-

tion, USA) in 24-well plate. The plates with cells were incubated for 30

minutes, before 300 𝜇L of NB-B27 media was added. On DIV1 2, 500 𝜇L

of NB-B27 with 0.5 mM L-glutamine was added. One-third of the media

was replaced with fresh media three times per week.

For calcium recordings, [2, p.13-14] describes the following steps:

Oregon Green 488 BAPTA (Thermofisher) fluorescent dye was prepared

by adding 8 𝜇L of Pluronic acid (Thermofisher) and, after 5 minutes mix-

ing via sonification, 72 𝜇L of artificial cerebral spinal fluid [1]. Immediately

before application to the cultured cells on the coverslip, the dye mix was

diluted with 1:8 warm media. A coverslip was then transferred from the

1Dulbecco’s phosphate-buffered saline [2, p.9]
2day in vitro

26



24-well plate into a 35 mm petri dish and immediately 40 𝜇L of the dye

in media was added. The cells were incubated for 5-6 minutes after which

the coverslip was gently washed three times with warm NB-B27 media to

remove eccess dye. The coverslip was transferred to the two-photon rig in

2 mf warm NB-B27 media.

Two photon calcium imaging (3i VIVO) was performed using the Slide-

book software (3i). For the recording the coverslip was transferred to a

warm circulating bath 28−30 ∘C with a flow of HEPES buffer [pH 7.4,

osmolality 309-319]. The position of the slide under the microscope was

adjusted to maximize the number of cells visible within the frame (517

± 1 𝜇m × 517 ± 1 𝜇m). A 1600 frame-long timelapse (approximately

10 minutes recorded with frequency 2.8± 0.1 Hz) of changes in the green

fluorescence (excitation wavelength 800 nm) was recorded from a single

Z plane with resolution of 256 × 256 pixels. Next, a 3D-stack image of

the same recording area was taken to visualize the cell morphology with

both green (for all cells) and red (for PV-Tdtomato positive cells) filters.

The 3D stack is created with 10 Z-planes above and 10 Z-planes below

the recorded timelapse with resolution 512× 512 pixels.

Figure 2-1 shows an example of a 3D-stack image and Figure 2-2 shows an image

from the corresponding imaging sequence. The sequences in the data set are named

using the mouse genotype, the date the culture was initiated, which pup in the litter

it came from, when the cortex was harvested (on the day of birth or the day after),

days in vitro (DIV) of the culture, which coverslip it came from, and which section

on the coverslip was recorded.

2.2.1 Annotated Regions of Interest

For each image sequence, neuroscientists manually annotated each neuron, or region

of interest (RoI), found in the images. Each RoI is annotated as an ellipse. The
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Figure 2-1: Example of 3D-
Image

Figure 2-2: Example of Image
Sequence

annotations include central coordinates, area, perimeter, and major and minor axis

descriptions for each RoI.

2.2.2 Annotated Burst Activity Events

Neuroscientists also annotated times of burst activity for various neurons in each

image sequence. The annotations include the beginning and end times of each burst,

its peak value, and whether the signal displayed characteristics of slow oscillation.
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Chapter 3

Neuron Detection

An important part for neuronal network analysis is knowing when and how frequently

neurons fire action potentials, or are active. We refer to events related to firing

action potentials as burst activity. Improving the ability to analyze neuronal networks

depends on reliable detection of burst activity. The signals extracted from identified

neurons affect the detection of burst activity. Therefore, we would like to extract

signals with high signal-to-noise ratio from which burst activity events can easily be

detected. In order to extract signals, however, we first need to detect regions of the

images that are neuron cell bodies. Moreover, we would like to detect as many neuron

cell bodies as possible without introducing too many false positives. This motivates

improving the the first step of the pipeline: neuron detection. We also want to define

good boundaries for each identified neuron cell body. Defining better boundaries

can help assign more representative pixels to each neuron from which we can extract

better signals.

While methods in previous work achieved promising results in detecting the loca-

tions of neuron cell bodies, they relied on unsupervised methods. Furthermore, most

methods attempt to pinpoint the central coordinates of the cell bodies and draw

approximate circular boundaries around these centers.

We first revisited some of these unsupervised methods to determine whether they

could be modified to identify more neuron cell bodies. Following this, we also take

advantage of the annotated RoIs data set to investigate a supervised learning method
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for neuron detection.

The Neurofinder competition is a public competition for detecting neurons in

calcium imaging data sets similar to ours and ranks submitted solutions [18]. Dr.

Mierau noted that the data sets come from vivo recordings whereas our data set is

composed of in vitro recordings. Additionally, it was noted that the images used

in this competition appear to have a 3D cellular architecture whereas our imaging

sequences consist of 2D layers of cells. Nonetheless, we thought that the methods

submitted to this competition may still be applicable to our case. Several of the

algorithms submitted make use of convolutional neural networks (CNN) [18]. One

of the leading solutions is based on the Mask R-CNN model [16]. While details for

this solution were not found, we found that another Mask R-CNN model performed

well for detecting nuclei in images of cells [19]. Therefore, we thought using a Mask

R-CNN model was promising and trained our own model using this architecture for

neuron detection on our data.

Rather than use images in the time-lapse sequence itself to identify neurons as done

in [4], we perform neuron detection on the 3D image associated with each sequence

instead. We then use these detected regions to extract signals from the imaging

sequence. Upon visual inspection of the 3D images, we thought that the neurons on

these images were easier to identify for an untrained eye. Therefore, we thought the

3D images may provide an opportunity for better neuron detection for our methods

as well.

3.1 Methods

3.1.1 Threshold and Contour

We first revisited the Threshold and Contour detection method from previous work

[4]. Because we wanted to detect as many neurons as possible, we eliminated the

adaptive threshold step before detecting contours. Instead, we simply threshold the

3D image using OpenCV’s Otsu thresholding [20] and then run contour detection on
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the outputted binary image . We run contour detection in two iterations. First, we

limit the minimum enclosing circle of any particular contour to a radius of 40 pixels.

Although this generally identifies most RoIs, larger contours would often be too large

and enclose multiple neurons together while many small "noisy" contours also would

be identified. In an attempt to eliminate these noisy contours, we experimented with

using a smaller radius on this first iteration. However, we found that this would often

eliminate smaller contours that actually contained neurons. Therefore, we maintained

the larger radius of 40 and instead performed a second iteration. In this second

iteration, we find all contours that are greater than 5 pixels in radius and then rerun

contour detection on the section of the image described by the bounding box of the

contour. However, this time we decrease the maximum radius allowed to 10 pixels. If

we find smaller contours, we eliminate the original contour and add the new contours

to our final list. Otherwise, we keep the original contour in the final list. Pseudocode

for this algorithm is presented below.

In [4], the center of each contour was found and then a circle was drawn around this

center to represent the neuron cell body region. Here, rather than use the minimum

enclosing circle of each contour as the bound for each cell body, we kept the actual

contours as the bounds. We thought this would be a more accurate representation of

the neuron and may affect the signal extracted from it. While this method generally

performed well in identifying most of the neuron cell bodies, we found that even

after the second iteration, contours would often enclose two neurons together. This

was evident particularly in cases where cell bodies were close to each other and the

surrounding regions of the neuron cell bodies were lighter. Additionally, the 3D

images often show regions of the network other than cell bodies clearly as well. These

regions may include axons, dendrites, and small bits of debris. Therefore, many of

the small, noisy contours identified these other regions. Figure 3-1 shows an example

of contours found using this method.
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Algorithm 1 Psuedocode for Threshold and Contour
max_radius = 40
initial_contours ← Find contours in image bounded by max_radius
max_radius = 10
final_contours = []
for contour in initial_contours

if radius of contour > max_radius then
crop_image ← Section of image defined by bounding box of contour
new_contours ← Find contours in crop_image bounded by max_radius
if length of new_contours > 0 then

Add new_contours to final_contours
else

Add contour to final_contours
end if

end if
return final_contours
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Figure 3-1: Threshold and Contour Results. Results of Threshold and Contour
on left. Annotated cell bodies on right.

3.1.2 Template Matching

In addition to the Threshold and Contour method, we also revisited the Template

Matching method. In previous work, it was found that the model was highly sen-

sitive to the bag of neuron templates used [4]. Therefore, we increased the number

of templates used from 4 to 29. We attempted to choose templates that we thought

would help identify closely clustered cell bodies as well as cell bodies against lighter

backgrounds. Examples of these templates can be seen in Figure 3-2. The template

matching method finds areas in a given image that are similar to a template image

[4, 20]. Similar to previous work, we combine our bag of templates with the OpenCV

template matching algorithm with correlation coefficient metric [4, 20]. The correla-

tion coefficient equation evaluates the strength of a match [20]. Using this equation,

a similarity image is generated and then a threshold is applied to it. We maintained

the threshold value of 200,000 from previous work, which appeared to perform well on

the 3D images as well. Finally, Birch clustering from scikit-learn [21] is used to find

the centers of the matched regions. We also maintained the Birch threshold value of

10 from previous work.

33



While we found this method works well in identifying central coordinates for most

neuron cell bodies in an image, it is also unable to distinguish well between closely

clustered neurons. In many cases, it will label the middle of multiple neuron cell

bodies as the center of a single neuron cell body. Figure 3-3 shows an example of

regions found from this method.

Figure 3-2: Templates for Template Matching. Examples of Neuron Cell Body
Templates

Figure 3-3: Template Matching Results. Results of Template Matching on Left.
Annotated RoIs on right.

3.1.3 Mask R-CNN for Neuron Detection

While the unsupervised methods performed well, we wanted to investigate whether

we could achieve better performance with a supervised learning method by taking

advantage of the expertly annotated RoIs. Mask R-CNN has been shown to perform
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well in general object detection and instance segmentation [16] and was also able

to detect nuclei in images of cells well in [19]. Therefore, we thought it may also

perform well on our data set. Furthermore, the model is easy to adapt without

extensive modification [22].

Mask R-CNN

Mask R-CNN was developed by Facebook AI Research (FAIR) as a "conceptually

simple, flexible, and general framework for object instance segmentation" [16, p.1].

The model not only efficiently detects objects in an image, but also generates high-

quality segmentation masks for each instance [16]. We provide a brief overview of the

model here.

[16, p.3] states that it outputs "for each candidate object, a class label and a

bounding-box offset" and "the object mask".

Data Set Creation

In order to train a Mask R-CNN model, we had to first create an appropriate data

set from our images and annotated RoI statistics. For each image, we had to create

mask images, each of which depicted a single neuron in the image. [16, p.3] describes

a mask as encoding "an input object’s spatial layout". The annotated RoI statistics

treat each RoI as an ellipse and provide the central coordinates, area, perimeter,

major axis coordinates, and major and minor axis lengths. However, we thought that

an ellipse was not a precise enough depiction of a neuron. Therefore, we used the

central coordinates from these annotations combined with other methods to create

masks for the 3D image.

For some of the images, we had an associated mask image ("total-mask image")

that had contours of every neuron in the 3D image. An example of a total-mask image

can be seen in Figure 3-4. We ran the Threshold and Contour detection method on

this total-mask image to separate each RoI and create separate binary mask images

for each RoI. While these masks generally depicted each RoI as the same shape, we

thought that they still covered the neuron regions reasonably well.
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Figure 3-4: Total-Mask Image. Example of total-mask image (right).

For 3D images for which we did not have these total-mask images, we used our

Threshold and Contour method to find contours of potential RoIs in the image. We

then compared these contours to the central coordinates of the annotated RoIs. We

selected contours that appeared to match up with the central coordinates of annotated

RoIs to create mask images. Examples of these mask images can be seen in Figure

3-5.

Figure 3-5: Masks Created from Contours. Examples of masks created from
contours (first, second, and third images from the right).

We note that this data set creation method may limit the performance of the model

in certain ways. For example, when using the total-mask image, the contours are not

entirely specific to the shapes of the neuron cell bodies. Therefore, the masks created

may not be exactly true in shape. When using the threshold and contour detection
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method to create masks, the masks may still be subject to the issues we presented

with that method, such as having masks that encompass two closely clustered neurons

as one.

Extension to Neuron Detection

Our implementation stems from an existing Mask R-CNN implementation by Mat-

terport Inc. released under the MIT License [22].

We followed the training procedure outlined for nucleus detection in [22]. We ini-

tialized the model using pre-trained weights for the MS COCO data set [23] provided

in [22] and trained the model in two stages. In the first stage we only trained "the

RPN, classifier and mask heads of the network" [22] of the network with learning rate

0.001. Next, we reduce the learning rate by a factor of 10 and train all layers in the

network.

We found that our supervised learning model based on Mask R-CNN was able to

find good contours for the neurons it detected. Furthermore, at a minimum prediction

confidence level of 0.5, the inference model was able to detect the majority of neurons

in an image. Additionally, we found that this method was able to separate closely

clustered neurons better than the previous methods in several cases. In some cases,

the method detects one of the closely clustered neurons rather than encompass both

into a single contour. Furthermore, we noticed that in some cases the model even

picked up on neurons that were not annotated in the mask images. We think that this

shows that the model is able to learn a good understanding of what a neuron looks like.

While it still does enclose two neurons in one contour for some images, we think that

this is a result of the masks it was trained with, as previously described. Therefore,

we think that creating better masks may help the model avoid this problem.

3.1.4 Combining Methods

While the Mask R-CNN model detects the majority of neurons in an image, we wanted

to extend the method to detect even more neurons. The Template Matching method,
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Figure 3-6: Mask R-CNN Results. Results of Mask R-CNN model on left. Anno-
tated RoIs on right.

despite detecting a higher number of false positives, identified neurons that the Mask

R-CNN model did not in several cases. However, the method detects the center of

each neuron cell body and only an approximate boundary.

We decided to combine these methods in an attempt to take advantage of their

different strengths and detect as many true neurons as possible. We first detect

neuron contours using the Mask R-CNN model. We then detect neuron circles using

the Template Matching method. We check to see whether each circle overlaps with

the minimum enclosing circle of a contour found from Mask R-CNN. If a circle does

not overlap with any contour, we add it as an additional neuron to our final list of

detected neurons. Pseudocode for this method is shown below. Figure 3-7 shows an

example of the results from this method.
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Algorithm 2 Pseudocode for Combined Method
contours ← Find contours using Mask R-CNN

circles ← Find circles from Template Matching method

nonoverlapping_circles = []

for circle in circles

if circle does not intersect any contour in contours then

Add circle to final_circles

return contours, nonoverlapping_circles

We perform an ablation study to show the advantages of combining methods

in the Combined Model. We evaluate the methods separately and compare their

performances to that of the Combined Model. These results, along with those of the

Threshold and Contour method, can be seen in Table 3.1.

Figure 3-7: Combined Model Results. Results of Combined Model on left (Mask
R-CNN model contours in pink and Template Matching circles in blue). Annotated
RoIs on right.
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3.2 Results and Discussion

We use the annotated RoIs data set to evaluate each neuron detection method. We

calculate the precision and recall values by determining, for each annotated RoI,

whether any of the detected neurons overlap with it. When considering overlap, each

annotated RoI is approximated with a radius of 5 pixels. Each detected contour is

represented by its minimum enclosing circle, where its radius is capped at 20 pixels.

Similarly, for each detected circle, its radius is capped at 20 pixels. This evaluation

does not penalize against a single detected region overlapping with multiple annotated

RoIs. Even though this may affect results for closely clustered neurons, we thought

this was still reasonable as we did not observe detected regions being too large and

this allows to compare our results to previous work [4].

We evaluate the Threshold and Contour and Template Matching methods on the

19 3D images against the RoIs found in the annotated data set. For the Combined

Model and Mask R-CNN Model, we evaluate the methods on using leave-one-out

cross-validation. We trained a model on each training set on a compute-optimized

instance with 16 vCPU and 64 GB memory. We trained for 4 epochs in each stage

and evaluated each test set with a confidence level of 0.5. It took approximately 4-5

hours to complete training for each data set. The average recall, average precision,

and average F1 scores for each method is shown in Table 3.1.

Table 3.1 also includes values reported for the highest scored detection method

from previous work (as evaluated in [4]): Threshold, Aggregate, and Contour with

Evolutionary Parameter Optimization. The F1 score presented in Table 3.1 for this

method is calculated using the average recall and average precision values reported.

We note that our highest performing methods have faster average run time, compa-

rable precision, much higher recall, and higher average F1 score.

In addition to leave-one-out cross-validation for the combined and Mask R-CNN

models, we created five additional data sets from the 19 3D images with less training

examples in each. Each data set has 14 training images and 5 test images. We also

train each model on the corresponding training set on a compute-optimized instance
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with 16 vCPU and 64 GB memory. We trained for 4 epochs in each stage and

evaluated each test set with a confidence level of 0.5. It took approximately 4-5 hours

to complete training for each data set. The results of this evaluation in Table 3.2

show the average of the average values obtained from the five test sets.
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We conduct Wilcoxon rank-sum tests in order to determine whether there is a

significant difference between the neuron detection methods. We conduct separate

tests for precision, recall, and F1 score. Samples for the Combined Model and Mask

R-CNN Model consist of 19 values from the leave-one-out cross validation. Samples

for the Threshold and Contour and Template Matching methods also consist of 19

values for each of the 19 images. We use [24]1 to conduct the tests, where the null

hypothesis is that "the distribution of x and y differ by a location shift mu and the

alternative is that x is shifted to the right of y". x and y refer to the two samples

and mu is 0 in our case. Table 3.3, 3.4, and 3.5 show these results2. Table 3.5 notes

significant differences in F1 score when using the Combined Model. We show box and

whisker plots for the values obtained from each method in Figures 3-8 through 3-11.

We also conduct a Wilcoxon rank-sum test between the leave-one-out Mask R-

CNN models and the Mask R-CNN models obtained from training with the five

additional data sets described earlier using the same procedure above. In this case, we

take x to be the leave-one-out results. We conduct three separate tests: for precision,

recall, and F1 score to determine if there is a significant difference between training

the Mask R-CNN models with 14 images versus 18 images. Our first sample consists

of 19 values from the leave-one-out cross validation. Our second sample consists of

5 values, each an average of the results obtained from the five additional data sets

described earlier. The results of these tests can be seen in Table 3.6. The box and

whisker plot for the five additional Mask R-CNN models can be seen in Figure 3-12.

1The function uses a normal approximation when an exact p-value cannot be found.
2The Wilcoxon rank-sum test assumes two independent samples [25]. We note that the perfor-

mance of the Combined Model depends on both the Mask R-CNN model and the Template Matching
method, so these samples may not be independent of each other. We still include these values in
the table but realize that the dependence might affect results.
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Method x Combined Mask Threshold
y Model R-CNN and Contour

Mask R-CNN Model 0.6 - -
Threshold and Contour 0.007 0.004 -

Template Matching 0.9 0.9 1.0

Table 3.3: P-values from Wilcoxon Rank-Sum Tests Between Methods for
Precision Values. The table shows the p-values obtained from the Wilcoxon rank-
sum tests for precision values for each pair of methods.

Method x Combined Mask Threshold
y Model R-CNN and Contour

Mask R-CNN Model 0.001 - -
Threshold and Contour 1.0 1.0 -

Template Matching 0.02 0.6 0.0003

Table 3.4: P-values from Wilcoxon Rank-Sum Tests Between Methods for
Recall. The table shows the p-values obtained from the Wilcoxon rank-sum tests for
recall values for each pair of methods.

Method x Combined Mask Threshold
y Model R-CNN and Contour

Mask R-CNN Model 0.009 - -
Threshold and Contour 0.05 0.7 -

Template Matching 0.1 0.9 0.7

Table 3.5: P-values from Wilcoxon Rank-Sum Tests Between Methods for
F1 Scores. The table shows the p-values obtained from the Wilcoxon rank-sum tests
for F1 scores values for each pair of methods.
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Test P-Value
Precision 0.3
Recall 0.8

F1 Score 0.8

Table 3.6: P-values from Wilcoxon Rank-Sum Tests between Leave-One-
Out Mask R-CNN Model and Mask R-CNN Model with Less Training
Images. The table shows the p-values obtained from the Wilcoxon rank-sum tests
between the values obtained from the leave-one-out Mask R-CNN models and the
Mask R-CNN models using the additional five data sets.

Figure 3-8: Recall, Precision, F1-Score Box Plots for Combined Model.
This figure shows the recall, precision, and F1 scores obtained using the leave-one-
out Combined Models.
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Figure 3-9: Recall, Precision, F1-Score Box Plots for leave-one-out cross-
validation Mask R-CNN Models. This figure shows the recall, precision, and F1
scores obtained using the leave-one-out Mask R-CNN models.

Figure 3-10: Recall, Precision, F1-Score Box Plots for Threshold and Con-
tour. This figure shows the recall, precision, and F1 scores obtained using the Thresh-
old and Contour method.

46



Figure 3-11: Recall, Precision, F1-Score Box Plots for Template Matching.
This figure shows the recall, precision, and F1 scores obtained using the Template
Matching method.

Figure 3-12: Recall, Precision, F1-Score Box Plots for Mask R-CNN Models
using Additional Data Sets. This figure shows the recall, precision, and F1 scores
obtained using the five additional data sets for the Mask R-CNN models.
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Chapter 4

Neuronal Signal Extraction

After detecting neurons in the 3D image, we extract signals from the corresponding

regions in the imaging sequence. We resize the images in the imaging sequences to

match the dimensions of the 3D image. The extracted signals indirectly measurements

of neuronal activity [26] and are used to detect burst activity. Ideally, we want

to extract signals with minimal noise and clear burst activity. In this chapter, we

describe the signal extraction methods using several different heuristic filters that we

investigated. We provide a brief evaluation of these methods in the next chapter.

4.1 Original Signal Extraction Method

A single signal depicting neuronal activity over time is extracted from each identified

neuron cell body. We extract this signal by summing all pixels within a neuron

boundary and dividing by the number of pixels in the boundary at each frame within

the 1600 images of a sequence. An example of an extracted signal is shown in Figure

4-1.

For every image sequence, we also extract a signal consisting of 3-5 pixels from the

top left of the images. We subtract this signal from all other signals extracted from

the sequence. Because this region is predominantly black, the signal extracted from

these pixels may represent artefacts in the images which we can remove from neuronal

signals. Generally, this signal predominantly consists of zeroes and very small values
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and subtracting it from other signals does not produce a noticeable difference.

Figure 4-1: Example of Signal Extracted from Identified Neuron Cell Body

The extracted signals generally come with a high degree of noise. We would ideally

like to extract the underlying "true" signal. It is possible that extracting signals from

a limited number of pixels in each contour can help extract a signal that is closer to

the ground truth signal. In the following sections, we describe different approaches

for filtering pixels in an attempt to extract better signals.

4.2 Variance-based Signal Extraction

The first heuristic filter we explored was to filter pixels based on variance. We ex-

tracted a signal for a neuron using only the pixels in the contour whose individual

signals had the highest variances. In other words, we find a raw signal for every pixel

("pixel signal") in the contour and calculate its variance. We then find pixels with the

highest variance values and average their signals to produce the final signal for the

neuron. Because burst activity is associated with increases in signal intensity values,

we thought that using the variance as a heuristic filter for pixel selection may help

extract a signal in which burst activity was clearer. A heat map showing variances
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for each pixel in the detected neuron contours can be seen in Figure 4-2.

Figure 4-2: Heatmap of Pixelwise Signal Variances for Detected Contours.
3D image on right. Heatmap of detected contours on left.

First, we extracted signals from the five pixels with highest variance in the con-

tours. However, we suspected that these signals may be too noisy, producing false

burst activity events possibly. Therefore, we instead considered these five pixels as

the core cluster of a neuron. We then extract a signal from only this core cluster,

the "core cluster signal". Next, we add a limited number of pixels from the rest of

the contour to this core cluster based on the pixel signals’ correlations with the core

cluster signal. We added the pixels with the highest correlations, creating the final

cluster from which the neuronal signal is extracted.

We found that sometimes the five pixels with highest value were not adjacent to

one another and thought that this might be due to noise or artefacts. Therefore, we

enforce the core cluster to be connected. Once we extract the top five pixels, we check

to see if the pixels are connected. If they are connected, they form the core cluster.

Otherwise, we find the pixel with the highest value and add its neighboring pixels to

form the core cluster still capped at five pixels.

51



We experimented with two different correlation metrics. We first experimented

with cosine similarity between each pixel signal and the core cluster signal as the

correlation metric ("cosine correlation"). We add the pixels whose pixel signals have

with highest cosine similarity to the core cluster. We also investigated a similarity

metric based on Hamming distance ("OASIS correlation"). Once we extracted the

core cluster signal, we find points in the signal that correspond to increases in neu-

ronal activity, or burst activity, using the OASIS deconvolution method (described in

Chapter 5). We will refer to these points as bursts and the sequence of bursts for a

signal as the burst train. This burst train is positive where the method detects an in-

crease in burst activity in the signal. We convert this burst train to a binary list that

is positive where the burst train is positive. From each of the remaining pixels, we

extract pixel signals and find its binary burst train ("pixel burst train"). We compare

the pixel burst train to the core cluster burst train and find the number of indices

with positive burst train values that the pixel burst train and the core cluster burst

train have in common. If the Hamming distance between the binary burst trains is

defined as 𝑑, then this is also equivalent to 1− 𝑑. The proportion of matching indices

is the correlation score for that pixel.

Because it was unknown how many pixels would be best for neuronal signal ex-

traction, we experimented with the number of pixels allowed in the final cluster.

Specifically, we experimented with 5, 10, 15, and 20 pixels. However, in order to be

added to the final cluster, the correlation value must be greater than zero. For several

instances, neuroscientists noted better signal-to-noise ratios. In other instances, they

noted that signals extracted from all pixels within a contour produced clearer sig-

nals. However, it was also thought that finding the optimal number of pixels for each

identified neuron cell body region may help alleviate this variability in signal-to-noise

ratio. Examples of signals found using variance and these different correlation metrics

can be seen in Figures 4-3 and 4-4.

Extracting signals per pixel in each contour can take between 20-70 minutes for

a single sequence with multiprocessing on a compute-optimized 16vPU and 64 GB

memory machine, depending on the number of contours detected and their sizes.
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However, once these signals are extracted, the remaining pipeline does not have any

major run time blocks.
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Figure 4-3: Signals Extracted using Variance and Cosine Correlation and
the Corresponding Burst Trains. The topmost signal was extracted from all
pixels in the contour. The second from the top is the core cluster signal consisting of
5 pixels. The next signal is the final cluster signal capped at 10 pixels. The following
pixel is the final cluster signal capped at 15 pixels. The last signal is the final cluster
signal capped at 20 pixels. Each signal is shown in blue followed by its burst train in
yellow.
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Figure 4-4: Signals Extracted using Variance and OASIS Correlation and
the Corresponding Burst Trains. The topmost signal was extracted from all
pixels in the contour. The second from the top is the core cluster signal consisting
of five pixels. The next signal is the final cluster signal capped at 10 pixels. The
following pixel is the final cluster signal capped at 15 pixels. The last signal is the
final cluster signal capped at 20 pixels. Each signal is shown in blue followed by its
burst train in yellow.
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4.3 MMA-based Signal Extraction

This method follows a similar procedure as the variance-based extraction. Instead

of calculating the variance of each pixel signal, we find the maximum, minimum,

and average values of the pixel signal over the 1600 images in the sequence. We then

calculate 𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

(MMA) for each pixel. We now use these values to find the

core and final clusters. The rest of the procedure follows from the previous section.

In the variance-based extraction method, we found that the central pixels of a

contour tend to show the highest values. However, with the MMA method, we find

that the boundaries of the contour tend to show the highest values. This can be seen

in the heat maps in Figure 4-5 and 4-6 (we ommited contours that have extremely

high values that overshadowed the remaining values in Figure 4-5). Neuroscientists

found the MMA values to align with their experiments as the fluorescent dye is applied

to the outside of the cells. In the example in Figure 4-6, we see that the highest-

value pixels according to variance are the lowest-value pixels according to MMA (and

vice versa). Examples of signals extracted using MMA values and the two different

correlation metrics can be seen in Figure 4-7 and 4-8. Figure 4-9 shows masks of the

different pixels used for each signal extraction.
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Figure 4-5: Heatmap of Pixelwise Signal MMA-values for Detected Con-
tours. 3D image on right. Heatmap of detected contours on left.

Figure 4-6: Heatmaps for Single Contour.. MMA-based heatmap on left.
Variance-based heatmap on right.
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Figure 4-7: Signals Extracted using MMA and Cosine Correlation and the
Corresponding Burst Trains. The topmost signal was extracted from all pixels
in the contour. The second from the top is the core cluster signal consisting of five
pixels. The next signal is the final cluster signal capped at 10 pixels. The following
pixel is the final cluster signal capped at 15 pixels. The last signal is the final cluster
signal capped at 20 pixels. Each signal is shown in blue followed by its burst train in
yellow.
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Figure 4-8: Signals Extracted using MMA and OASIS Correlation and the
Corresponding Burst Trains. The topmost signal was extracted from all pixels
in the contour. The second from the top is the core cluster signal consisting of five
pixels. The next signal is the final cluster signal capped at 10 pixels. The following
pixel is the final cluster signal capped at 15 pixels. The last signal is the final cluster
signal capped at 20 pixels. Each signal is shown in blue is followed by its burst train
in yellow.
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Figure 4-9: Example of Final Cluster Pixels from Different Extraction Meth-
ods. Left to right, the columns show increasing number of final cluster pixels: 5
pixels, 10 pixels, 15 pixels, 20 pixels. From top to bottom, the rows show differ-
ent signal extraction methods used: variance with cosine correlation, variance with
OASIS correlation, MMA with cosine correlation, MMA with OASIS correlation.
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4.4 Slow Oscillation and Calcium-Drift Removal

Once we extract the final signal from each contour, we remove both the calcium drift

and any slow oscillations from the signal. Calcium drift is the gradual directional shift

of the signal. Slow oscillations may correspond to coordinated activity of neurons

which alternate between active (up) states and silent (down) states [27]. Subtracting

slow oscillations allows for signals to generally fluctuate about a fixed value. We

believe that removal of slow oscillations allows for better burst activity detection in

the next step of the pipeline. The methods for both calcium drift removal and slow

oscillation removal were provided by Dr. Mierau’s group. To find calcium drift, a

Savitzky-Golay (savgol) filter with window length set to one less than the number

of frames in the signal is fit to the raw signal to. This drift is then subtracted

from the raw signal. Next, a Fourier transform is used to find the frequency of the

slow oscillation. From this, we can determine whether slow oscillations exist in the

signal. If it does, the frequency of oscillation is found using the Fourier transform

and calculating the spectrum. A savgol filter of proper window-length based on this

frequency is fit to the raw signal with calcium drift removed. An example of this

calcium drift and slow oscillation removal can be seen in Figure 4-10. We evaluate

burst activity detection on signals extracted using the methods in the next chapter.
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Figure 4-10: Example of Slow Oscillation and Calcium Drift Removal. The
original signal is shown on top and the signal with calcium drift removed is shown
below.
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Chapter 5

Burst Activity Detection

5.1 OASIS Method for Deconvolution

While changes in fluorescence expression over time can be used to observe burst

activity in a neuronal network, extracting the exact times of burst activity in the

signals is a nontrivial problem. Luckily, [28] reports the top-performing algorithms

in the spikefinder challenge. The authors of [28, p.3] state that they organized the

spikefinder challenge to "crowd-source the problem of developing algorithms from

inferring spike rates from calcium signals" found from two-photon calcium imaging.

[29] notes calcium deconvolution using "Online Active Set method to Infer Spikes

(OASIS)" as a top-performing method [17]. Therefore, we detect burst activity in

extracted signals using the method presented in [17], which we refer to as OASIS. The

OASIS method is a "fast online active set method to solve [the] problem of sparse non-

negative deconvolution" for "estimation of neural activity" [17, p.1]. The algorithm is

"a generalization of pool adjacent violators algorithm (PAVA) for isotonic regression"

[17, p.1].

The extracted signals are raw signals that represent a time series of measured flu-

orescence values. However, it is common practice to baseline signals and consider the

relative fluorescence at each time point, as this is often considered biologically more

relevant [2]. While we explored different baselines for creating relative fluorescence

signals, we ultimately thought burst activity appeared more obscured in the relative
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fluorescence signals. Therefore, we decided to use the raw signals with calcium drift

and slow oscillation removed as the final signals passed to OASIS. We thought that

this would remove bias of the OASIS algorithm towards rising phases of oscillation

and eliminate noise.

An example of burst activity detection using OASIS can be seen in Figure 5-1.

Figure 5-1: Example of Burst Activity Detection using OASIS. The signal are
shown on top in blue and the associated burst trains found using OASIS is shown
below in yellow.

5.2 Results and Discussion

The annotated burst activity data set provides start and end frames for identified

bursts. Bursts from different neurons are annotated separately. The neurons in this

data set are labeled with numbers corresponding to those in the annotated RoI data

set. Because we extract signals from neurons detected using our neuron detection

methods, we do not know for sure which neuron labels in the burst activity data

set align with the automatically detected neurons. However, we manually matched

detected neurons to labeled neurons for a single 3D image. We used a Mask R-CNN

model for contour detection taken from the leave-one-out cross-validation, where the

test image for the model corresponds to the imaging sequence chosen for evaluating

burst detection. We extract signals from each detected contour using the different

methods discussed in Chapter 4. We also extract a signal from all pixels in the

contour, or the "total signal". We then detect bursts for these signals using OASIS.
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OASIS gives a list of nonnegative values for each point in the signal as a burst train.

However, many of these values can be very small and it is not clear what value

to use as a threshold for considering burst activity events in our data. Therefore,

we consider two different thresholds. We evaluated our methods using two different

thresholds: 0.03 and 0.005. For every annotated burst interval, we check whether a

detected burst index falls within the interval. We do not repeat detected burst indices

for different annotated burst intervals. We calculate the proportion of annotated

burst intervals for which a detected burst falls within the interval. We calculate

this value for every neuron possible in the sequence. For the sequence we evaluated,

seven neurons had associated annotations from all of the neuron cell bodies that we

manually matched. The average values of this evaluation are shown in Table 5.1 and

5.2. For all evaluations using a heuristic filter, we use a final cluster capped at 15

pixels and a connected core cluster.

The method in [4] returns detected bursts activity events as time intervals. When

evaluating this method, we considered only the start values of each interval for eval-

uation. The rest of the evaluation is the same as above. Figures 5-2 through 5-7

show the results of bursts detected from signals found through the different methods

described previously.
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Figure 5-2: Detected Bursts for Total Signal. The total signal is shown on top
and the corresponding burst train is shown below. The red regions in the bottom
plot show the annotated burst intervals.

Figure 5-3: Detected Bursts using Method from Previous Pipeline. The total
signal is shown in top the topmost plot. The purple regions in the middle plot depict
the detected bursts. The red regions in the bottom plot show the annotated burst
intervals.
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Figure 5-4: Detected Bursts for MMA and Cosine Correlation Signal Ex-
traction. The total signal is shown on top. The final cluster signal is shown in the
middle and the associated burst train is shown right below in yellow. The red regions
in the bottom plot show the annotated burst intervals.

Figure 5-5: Detected Bursts for MMA and OASIS Correlation Signal Ex-
traction. The original signal is shown on top. The final cluster signal is shown in
the middle and the associated burst train is shown below. The red regions in the
bottom plot show the annotated burst intervals.
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Figure 5-6: Detected Bursts for Variance and Cosine Correlation Signal
Extraction. The total signal is shown on top. The final cluster signal is shown in
the middle and the associated burst train is shown right below in yellow. The red
regions in the bottom plot show the annotated burst intervals.

Figure 5-7: Detected Bursts for Variance and OASIS Correlation Signal
Extraction. The original signal is shown on top. The final cluster signal is shown
in the middle and the associated burst train is shown below. The red regions in the
bottom plot show the annotated burst intervals.
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Previous Total Variance Variance MMA MMA
Method Signal Cosine OASIS Cosine OASIS

𝜇 = 33.8% 𝜇 = 97.1% 𝜇 = 100.0% 𝜇 = 100.0% 𝜇 = 99.0% 𝜇 = 83.8%
𝜎 = 11.5% 𝜎 = 7.0% 𝜎 = 0.0% 𝜎 = 0.0% 𝜎 = 2.3% 𝜎 = 34.5%

Table 5.1: Evaluation of Burst Detecting Over Different Signal Extraction
Methods (Threshold = 0.03). The table shows the results of burst activity de-
tection using signals extracted from the different methods and the total signal using
0.03 as the burst train threshold. The results of burst activity detection using the
method from the previous pipeline are also shown.

Previous Total Variance Variance MMA MMA
Method Signal Cosine OASIS Cosine OASIS

𝜇 = 33.8% 𝜇 = 100.0% 𝜇 = 100.0% 𝜇 = 100.0% 𝜇 = 100.0% 𝜇 = 100.0%
𝜎 = 11.5% 𝜎 = 0.0% 𝜎 = 0.0% 𝜎 = 0.0% 𝜎 = 0.0% 𝜎 = 0.0%

Table 5.2: Evaluation of Burst Detecting Over Different Signal Extraction
Methods (Threshold = 0.005). The table shows the results of burst activity
detection using signals extracted from the different methods and the total signal
using 0.005 as the burst train threshold. The results burst activity detection using
the method from the previous pipeline are also shown.

The results in Table 5.1 and 5.2 indicate using OASIS deconvolution to detect

bursts outperforms the previous burst detection method. Furthermore, these results

indicate that the signal extraction methods using variance outperform the remaining

methods when with a burst train threshold of 0.03. However, they also show that

changing the burst train threshold affects the performance of the methods. Therefore,

we think that fine-tuning the threshold value used for burst evaluation may result in

better evaluation of our methods. Additionally, the results shown are calculated for

only seven neuronal signals in a single sequence. Evaluating more neuronal signals

across more sequences may also give a better understanding of the performance of

these methods. However, given that there seemed to be better signal-to-noise ratio

in many examples using these methods, we think that these methods are promising.

Furthermore, because we do not know exactly which annotated bursts are associ-

ated with a particular signal from an automatically detected neuron without manual
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matching, we provide the ability to iterate through and view each annotation option.

Figure 5-8 shows an example of this.

Figure 5-8: Annotated Burst Intervals for Different Neurons of Same Se-
quence. Each plot shows a different burst interval annotation found from separate
neurons in the same sequence (annotated intervals shown in red).
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Chapter 6

Conclusion and Future Work

In this work we have improved the existing pipeline for analyzing two-photon calcium

imaging sequences. Specifically, we introduced new methods for neuron detection,

signal extraction, and burst activity detection. The incorporation of these methods

in the pipeline may increase researchers’ ability to efficiently analyze two-photon

calcium imaging sequences.

6.1 Future Work

6.1.1 Neuron Detection Improvements

Future work can improve the neuron detection methods by training with more images

and creating masks that are truer to the neuron cell body regions. We think that

better masks can significantly improve the performance of the methods using Mask

R-CNN.

Given the training overhead for the Mask R-CNN model and the performance of

the unsupervised models, fine-tuning the parameters of the unsupervised models may

also result in better neuron detection.
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6.1.2 Signal Extraction and Burst Activity Detection Improve-

ments

As noted in the paper, we currently do not have a set threshold for adding pixels

to the main contour. Additionally, it is unclear which threshold value to use when

considering bursts in the burst train found by OASIS. Evaluating burst activity de-

tection using more signals may help determine good thresholds both for the number

of pixels in the final cluster and considering burst activity events. Further evaluation

may also help determine which extraction method, if any, has the best performance.

Furthermore, it may be that using different parameters for the OASIS deconvolu-

tion algorithm would be better suited for this data set. Further investigation of these

parameter values may produce better burst activity detection results.

Additionally, it may be possible to forgo the neuron detection step entirely by

calculating variance and/or MMA values for every pixel, rather than just the ones

assigned to detected neuron cell bodies. While we found this to take too long in terms

of run time, future work can explore faster alternatives. Signals can then be directly

extracted from the pixels whose pixel signals have the greatest values.

Future work can also investigate ways to combine information from the variance

and MMA values assigned to pixels to create a final cluster instead of being restricted

to a single method.

6.2 Clinical Implications

By detecting the number and timing of burst activity events from each neuron in

a time-lapse sequence, the neurons which are more active can be found. Groups of

neurons which are synchronized can be identified. From this information, neuroscien-

tists can create graphical representations of the neuronal networks for analysis. These

plots display information such as the number of active cells in the network and the

number and strength of connections per cell. From these representations, they are

able to find differences in development between the wild-type and Mecp2-deficient
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mice. Identifying these differences can help us better understand neuronal network

development and accelerate novel treatments to regulate network development.

Figure 6-1: Example of Network Analysis Plot.
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