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I INTRODUCTION

Exploring Deep Learning Models for Vulnerabilites
Detection in Smart Contracts

Nicolas Lesimple This project was initiated Shashank Srikant
Computational Science & Engineering and done in collaboration PHD Candidate at ALFA Group

EPFL with Shashank Srikant CSAIL, MIT
Email: nicolas.lesimple@epfl.ch Email: shash@mit.edu

Abstract

Solidity is a Domain Specific Language (DSL) that has emerged from the invention of distributed ledger and that
has been designed for Ethereum. Due to its specific structure, DSLs are threatened by unique bugs and vulnerabilities
that could induce millions of dollars losses. In this project, a Deep Learning (DL) model used with a novel source code
input representation was created for the line-level vulnerability detection task. The input’s structure in combination with a
specific DL model can capture intricate data and control dependencies between various program variables. Using controlled
settings and well-defined experiments, an exploration of the proposed approach was achieved to perfectly understand the
model and to improve the performances. The developed method has successfully classified line-level vulnerabilities using
a corpus of Solidity contracts as input. Our proposed pipeline is able to capture intricate dependencies between the
program’s elements and to understand the overall structure of the code. Characteristics defining the optimal type of input
are described to define the cases in which the proposed pipeline should be used.

I. INTRODUCTION

A software vulnerability is defined as "the existence of a weakness, design, or implementation error that can lead to an
unexpected, undesirable event compromising the security of the computer system, network, application, or protocol involved"
[1]. As the number of software systems increases every day, the attack surface, which is the total sum of vulnerabilities that
can be exploited, follows the same expansion. This surface needs to be protected to allow safe usage of the tools. Many
recent vulnerabilities issues, including the DAO (Decentralized Autonomous Organization) bug [2] or the Heartbleed bug [3],
underline the impacts of these security holes that can often have disastrous effects, both financially and on the society. These
different repercussions illustrate why detecting vulnerabilities in programs has been an area of research [60] and still a great
field of interest.

In this project, studied programs are written in Solidity, a Domain Specific Language (DSL) [4] designed for model
Ethereum which is a popular decentralized distributed ledger. This kind of language is susceptible to vulnerabilities due
to its very unique and specific structure : the vulnerabilities implicated in the DAO bug [2] are different from the ones
inducing the Heartbleed bug [3]. These structural weaknesses are expendable to all DSL and are responsible for recent
bugs that resulted in multi-million dollar losses. In the case of the DAO bug, the size of the attack surface scaled with the
amount of lost money, showing the importance of reducing the number of vulnerabilities. In this specific case, the adversaries
were able to manipulate smart contract execution to gain profit, by executing a complex sequence of precise actions.
This process used to take advantage of the existing vulnerabilities showed how complex it can be to realize that a piece
of code is vulnerable and thus underlines the interest of developing a software detection tool that could save millions of dollars.

Vulnerabilities are often due to a consequence of complex interactions between different parts of a program and largely occur
because of a mismatch between what a developer expects the program to do and what it actually does. As it is impossible to
guarantee the absence of vulnerabilities in a piece of code during its creation, then it is necessary to create methods to detect
them. While there are existing tools ( [9], [10], [11], [12], ...) for static (before running the program) or dynamic (during
the runtime) analysis of programs, these tools typically only detect a limited subset of possible errors based on predefined
rules. Despite the rich literature that addresses this topic (see Section III.Related Work), vulnerabilities and bugs escaping
recognition persist. Our designed method, based on the recent widespread availability of open-source repositories, and on
big-data-driven techniques aims to increase the amount of detected vulnerabilities. A corpus of programs is used as input, to
discover the global patterns of bug manifestation, which is something that static checking cannot do. The key point to succeed
in this task is to create an input structure able to quantify how variables interact in the context of program statements and
execution flow. Our proposed approach uses paths build with Abstract Syntax Tree (AST) structure [47], which is mainly a
compiler tree-based representation of the code. A specific DL model is then designed to take full advantage of the information
given by the input structure : it uses a combination of control paths and data transformations information which means that it
uses the context and interactions between elements forming the code.
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I INTRODUCTION

Fig. 1: Overview of the proposed framework

The final goal of vulnerabilities detection is to fix them. This main objective explains that the state of art detection tools
are working at a line level and also underlines the important need for understanding the causes of each vulnerability.
Consequently, an interesting software vulnerability detection tool must give interpretability about its predictions. However,
lack of model interpretability of deep neural networks is a limiting factor. DL models can indeed achieve high accuracy
but at the expense of high abstraction. Finding features involved in modeling is not straightforward because of the inherent
structure of the neural network : a neural network model corresponds to a structure that learns representations and patterns
in the provided data by applying different transformations to the inputs and consequently gives birth to a task-specific
output. In this work, the model is dissected in detail to understand how the latter reacts to different types of input, in fixed
experimental settings. The main goal is to demystify the implemented network by understanding the causes of the different
model’s behaviors and by finding the features imply in the modeling. This gain of insights would also help to improve accuracy.

Fig. 2: Table of the Requirements needed to achieve accurate performances
and to fully understand our approach for the vulnerability detection task

Contributions : The proposed framework is described in Figure 1. In this project, the following contributions are made to
answer the requirements, described in Figure 2, needed to obtain accurate vulnerabilities predictions :

• A corpus of Solidity smart contracts was created and used as code input. The unbalanced attribute of this collection of
programs was counteracted by a bench of manipulations described in IV.A.Preprocessing section.

• A new highly interpretable representation of a corpus of code was created to enable our model to understand complex
dependencies between the variables within programs. This input structure uses AST representation to model the
combination of control paths and data transformations. This structure is independent of any specific class of vulnerabilities
and can be used for different tasks using source code as input.

• Several baselines using different kinds of input information were implemented to assess the success of our approach and
to understand our models.

• A DL model was implemented to capture patterns that induce vulnerabilities and to take full advantage of the representation
of the corpus of code. This designed architecture, described in section IV.Method, allows the understanding of the program’s
context and dependencies.
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I INTRODUCTION

• A rigorous study was conducted on our designed models to be able to understand their behaviors in different experimental
settings. Models with different architecture combined with inputs of different wealth in terms of information were tried
and analyzed. A causal understanding of the accuracy of our models was consequently achieved.

• The usage of attention in the DL model, which is a kind of vector of importance, was also required to be able to add
interpretability to prediction. This process enables us to understand the pattern of code responsible for vulnerabilities
creation.

Therefore, this master thesis focuses on the understanding, the optimization and the assessment of the performance of a
novel natural code processing approach, based on AST paths, that would enable the detection of software vulnerabilities. This
research could lead to the creation of a program preventing vulnerabilities that could preclude disastrous financial and societal
consequences.
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II BACKGROUND

II. BACKGROUND

A. Solidity and Ethereum

In this project, studied programs are written in Solidity, a DSL [4] designed for model Ethereum which is a popular public,
decentralized, distributed ledger. A DSL is a computer language specialized in a particular application domain. This is in
contrast to a general-purpose language that is broadly applicable across domains. A distributed ledger is a consensus of
replicated, shared, and synchronized digital data geographically spread across multiple sites, countries, or institutions [66].
The main goal of this kind of ledger is to keep track of any transactions or contracts made in different parts of the world. The
huge advantage of a ledger is the elimination of the need for a central authority which allows the entire system to be more
robust against cyber-attack. In fact, to succeed an attack, the distributed copies stored in each node of the network need to be
simultaneously targeted as safety correspondence algorithms between the nodes are used. The other main property of Ethereum
is that all information stored in it becomes immutable and public. Public means that anyone can use the public function created
on each contract pushed on Ethereum. Consequently, it allowed to maintained transparency into the trading exchanges. To be
more concrete, Ethereum is the largest and most well-established, open-ended decentralized software platform. This particular
ledger is powered by Ether that can be considered either as a crypto-currency either as a fuel to run command or application on it.

While Ehtereum enables the deployment of smart contracts, Solidity is used for implementing these programs involved in
high-stakes transactions. A smart contract is a program that runs on the block-chain and has its correct execution enforced by
the consensus protocol [67]. Each smart contract possesses its own attributes like for example its value and the address of the
owner. By definition, these smart contracts are also immutable and can be shared by several actors thanks to the blockchain
platform. A smart contract is equivalent to a class in an object-oriented language : it thus consists of multiple functions. From
these contracts some vulnerabilities can arise due to their unique and specific design : in fact, functions inside programs are
calling other functions and need to be well designed. They should take into account, for example, parameters like the wealth
of the actors in a transaction or the time of the transaction, and it should be fast.

B. Creation of the dataset

To create the Solidity corpus of code, real-life codes were scraped from the website https://etherscan.io and dated from 2015
to 2018. Only files verified by Etherscan to be source codes corresponding to their byte codes available on the Ethereum
blockchain were used. This set was made of 28052 unities. Then, codes that were not compilable were filtered out which gave
us a collection of 25813 programs. Another filtering step was also used : only programs that had at least two transactions
recorded on Ethereum were kept in the dataset. This served as a proxy for filtering contracts involved in genuine transactions.
At the end of the entire process, our corpus of Solidity smart contracts was composed of 19023 files which represent 69599
contracts.

To conclude, thanks to scrapping, a corpus of Solidity smart contract was created and became our input. Our proposed
approach kept the collection of smart contract dimensions which means that the model is taking several programs as input,
and classify each line sequentially from the beginning to the end of the contract. During the modeling process, each line of
code of every contract was treated as an input to the model. The precise format of the input is described in more details in
Section IV.B.Usage of Abstract Syntax Tree.

C. Labeling Process

This step is a key part of the building of the Solidity dataset. Unlike tasks related to images or natural language processing
with simple text as input, these codes and even more these vulnerabilities are hard to discriminate. This specific task is not
achievable by all human beings. In fact, the labeling process is not straight forward as it required a qualified expert. That’s
why the usage of the error reports made by the state of the art vulnerability detection tools for Solidity was used as an input
source. This method has the advantage to be scalable, automated and provides a robust way to analyze the strength of our
approach. However, this method may inject some noise into the data. If the tool is wrong, our model is trying to learn patterns
without the right labels.
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Investigation was conducted on seven state of the art tools that have been developed to analyze Ethereum smart contracts :
Mythril [9], Zeus [10], Oyente [11], Manticore [12], Solgraph [13], Solium [14] and Smart Check [15]. The most robust and
popular of these tools (Mythril and Manticore for example) use symbolic analysis which is the state of the art method for
preemptive detection for a wide class of bugs according to [58]. Several criteria were set to choose which tool could fit to fill
our labeling process and only two, Mythril and Oyente, passed the following requirements :

• The tool should be based on sound technology and detect non-trivial issues
• The tool should be open-source, popular, and preferably well maintained
• The tool should be able to detect issues in smart contracts without having to modify/adding additional conditions, asserts,

etc
These two tools appeared to detect different numbers of vulnerability types (with 3 in common). Thus, both tools were used
on the corpus of Solidity codes and it appears that their predictions were similar in 90% of the cases. This indicates a possible
presence of noise injected by our labeling process. Then, to be able to choose one of the two libraries, the specificities of each
one were studied. As Mythril detects a higher number of vulnerabilities and as it gives more granular information compared
to Oyente, the Mythril state of the art library was set as the label source.

Unfortunately, Mythril is not perfect and its limitations need to stay in our mind. As an example, it has been shown that until
July 2018, Mythril did not detect overflows on values less than 2256 [16]. Some of the 11 vulnerability-types detected by the
tool had shown some buggy implementation or too general warnings. To be precise, over the 11 types, only 3 of them can
be used due to their occurrence in our dataset and due to the previously described issues. Besides, the creation of the corpus
has shown several weaknesses and errors of Mythril tool that have been reported on Github to contribute to Mythril’s support
and community. It means that the tool can be, in some cases, kind of error-prone.

To conclude, the state of the art vulnerability detection tool for Solidity called Mythril was used on our scraped input codes.
Mythril’s error reports were set as labels source for the entire dataset. The tool work at a line level, meaning that each line of
the input code has a label. The main advantages of this method are that the process is scalable and fully automated. Besides, it
suppresses the need for a domain-expert. However, the usage of this external tool injected some noise inside the ground-truth
data. In fact, Mythril is not reliable at 100% meaning that wrong labels are added in our ground-truth data which is definitely
harmful to our implemented models. Indeed, according to private correspondence with Mythril authors, the dataset possesses
an inherent false-positive rate of 10-15%. To answer this issue, a homemade synthetic dataset was used to analyze the behavior
of our model on noiseless data.

D. Vulnerabilities in Solidity programs

Fig. 3: Distribution of the entire dataset in term of labels

Figure 3 displays the number of apparitions of each vulnerability type in the entire dataset taking into account Timeout and No
Vulnerability categories while Figure 4 displays the distribution of labels corresponding to lines of code having a vulnerability.
From these tables, several conclusions can be drawn :

• The Timeout label is the most represented one. The corresponding data are unusable because Mythril was not able to
classify them. In fact, a time limit of 5 minutes per label was set for the tool’s analysis. This amount of time dedicated to
the task could be set to any limit depending on business interest. This limit was chosen because it was an optimal setting
considering the computational time/number of founded vulnerabilities trade-off. As it can be seen, 53,5% of the overall
scraped data failed to produce a verdict within that time limit. This subset of data corresponds to unlabeled lines of code.
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Fig. 4: Distribution of the dataset only corresponding to vulnerable lines in term of labels

• Our dataset is unbalanced. The negative class, which means the class corresponding to No Vulnerability is much more
present in the data. After filtering out Timeout labels, the proportion of No Vulnerability lines can be calculated : this
negative subset represents 98.55% of the entire dataset. It means that the lines corresponding to any type of vulnerabilities,
which is defined as the positive subset, represent only 1.45% of the data. To counteract the negative effect of the unbalanced
property, preprocessing steps were conducted.

• Inside the positive set, 3 dominant vulnerabilities can be observed. The other types are nearly not existing and thus can’t
be predicted by a model. The 3 dominant labels were used as targets for our models where their union represents the
positive set, while the other labels were not included in this subset.

The entire project’s goal was to classify these 3 different types of vulnerabilities using a binary classifier. It means that the
positive set of labels, formed by the union of the 3 types of vulnerability, is representing all lines having one issue. On the
opposite side, the negative set represents the lines without any vulnerability. To be precise, 4350 Integer Overflow, 2331
External Call to Fixed Address and 4574 Exception State vulnerabilities, which correspond to 11265 malicious lines in total,
were used in the dataset. The Solidity vulnerabilities of interest [17] are described below :

Integer Overflow [18]: Label 1 : Integer overflow vulnerabilities occur when a computed value is too large for the
type attached to the value. Let’s take the example of an integer : one integer has a maximum value which is 2256 − 1.
If the user tries to use an integer of a value near its maximum value to declare another variable of a different type that
possesses a smaller maximum value, the overflow occurs. The operations that can cause overflow are "add", "subtract",
"multiplication", and "exponentiation" instructions. The main consequence of this type of vulnerability is that simple addition or
subtraction operation does not produce intended results. Thus, if this operation is used in a conditional statement, the program
would have unexpected behavior. Several hackings using this kind of vulnerability have been observed and are described in [2].

External Call To Fixed Address (Unchecked Call Return Value) [19] : Label 2 : An external contract can take over the
control flow due to an unchecked call of the return value. The consequences of such an issue are that an attacker could force
the call to fail which would induce an unexpected behavior of subsequent program logic that could be used by an adversarial
for his own profit. As this may cause different invocations of the function to interact in undesirable ways, the execution is
resumed even if the called contract throws an exception.

Exception State (Assert Violation) [20] : Label 3 : In Solidity’s design, assertion are use to assert invariants. A code flow
should never reach a failing assert statement otherwise it means that it’s not working properly. In the case of this issue, a
failing assert invariant statement is reached, meaning that a bug exists in the contract or that assert is used incorrectly.

11 MATH-598 - CSE - EPFL



III RELATED WORK

III. RELATED WORK

Research about bug detection and consequently about program repair has been a major research area for the last decade [60]
and is currently becoming more and more important with the emergence of DSL in several domains like cryptocurrency.
Repair program corresponds to the fully automated process of fixing bugs into code while bug detection is only the first step
of this entire task. Two main challenges need to be overcome to achieve accurate predictions for vulnerability detection task:
the representation of source code used as input needs to capture the intrinsic semantics of a program and the relations of
variables within a program (long term dependencies between variables ...) while the model needs to be designed to take full
advantage of the proposed input structure. Research about source code representation, about the optimal model to capture
variables interactions and about the combination of both have been achieved to create methods reaching good performances.

A first reflection has occurred about the best input for vulnerability detection tasks. Some researchers have tried to use
Github information. In [32], vulnerability detection relied on the information of commit messages and bugs reports. Other
methods, that do not need any source code data, were also proposed as in [52] where researchers focused on a dynamic
taint analysis by performing binary rewriting at run time. Another way of seeing the problem was to directly consider the
transaction made by smart contracts instead of the code : to take advantage of vulnerabilities, hackers mainly focus on
functions creating a mismatch between the actual transferred amount and the amount reflected on the contract’s internal
stored data. In [49], this vision was used to detect irregular transactions due to various types of adversarial exploits. However,
it has quickly been shown, with the rise of DL, that the best input for this kind of task is a corpus of several codes
containing some vulnerabilities. The bench of described papers in the following paragraphs illustrates this fact. As said
previously in Section II.C.Labeling Process, obtaining labels corresponding to vulnerabilities in source code is a difficult
step as it requires an expert. One solution is to automatically create bugs from well-functioning code. In [25], a name-based
bug detection method was developed and showed that learning from artificially seeded bugs yields bug detectors that are
effective at finding bugs in real-world code. Another solution is to use existing detection tools as done in [27]. Our work uses
this approach, where a corpus of source code was used as input and state of the art statics analyzers were used as labeling source.

Another reflection has been made on the representation used to describe source code in combination with the model architecture.
The older vision was based on static analysis and fuzzing to detect vulnerabilities. In fact, traditional program analysis techniques
were used in [50] where string-based vulnerability signatures were generated with an automated based string analysis framework.
Another paper [54] tried to reduce the task to a Natural-Language Processing (NLP) problem by using a statistical language
model. Then, different NLP techniques were developed and used to understand source code in various tasks. Experts considered
code as text and used NLP knowledge to infer vulnerabilities presence. In [22], the inference of generative models was used
to expose bugs in compilers. In [24], neural machine translation techniques were used. The extraction of bug fixes pattern was
proposed in an Encoder-Decoder model to infer the presence of buggy code and fix it. The same approach was also used in
[30] focusing on JavaScript code.
More recently, with the widespread of DL and open-source code, a data-driven approach based on neural networks with a
corpus of codes as input, was proposed and studied for the vulnerabilities detection task. In [27], a method relying on deep
features representation learning to be able to interpret source code directly was developed. Static analyzers were used to obtain
labels and a CNN bag of lexicalized tokens in combination with a random forest classifier formed the proposed method. In [29]
DL is used to take advantage of the specific structure of source code. Labels were also created with a static analyzer. In this
work, source-based models showed better performances compared to models applied to artifacts extracted from the building
process. The same method was used in [46] where it has been shown that this approach was able to infer bug presence in
JavaScript source code. In [37], it has been proven that a DL model using Long Short Term Memory, partly inspired by human
memory, was able to learn long term semantic links appearing inside source code. In fact, this work has shown that language
models such as n-grams for software code often fail to capture long context dependencies compared to DL models. Being more
specific, the paper [33] focusing on buffer over-runs vulnerability detection reached the same conclusions. Considering all these
studies, our method was designed to take advantages of this data-driven approach combining a corpus of codes as input with DL.

The majority of previously described methods, if it’s not all of them, can’t capture the syntax and the semantics of the input
source code due to their design while our work focuses on the creation of highly interpretable features which capture variable
interactions. This ability is key to build accurate and interpretable models. To succeed in this task, the AST representation was
used. The pioneer paper [47] about the combination of DL with the usage of this kind of representation confirmed the feasibility
of this approach while [44] underlining the advantages of such a representation using ’bag-of-path’ structure as training input.
In fact, even without the usage of DL, [48] illustrated the ability of AST path representation using only statistical models. In
[56], the two terminal nodes of AST are used which allows the understanding of the control and the data-context of those
nodes. However, the proposed model was not able to capture long-range dependencies. To overcome this weakness, in [34], an
architecture composed of a Recurrent Neural Network (RNN) used in combination with the AST representation of source code
was proposed. The output vector representation was then used for different program comprehension tasks and proved its value.
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In [26], this algorithm able to learn the intrinsic structure of source codes was used to detect bugs with a Long Short-Term
Memory (LSTM) instead of an RNN. It showed its higher ability to learn features to infer the presence of vulnerabilities. The
retained design for our work is by consequence a DL model, made of LSTM networks using AST path as input representation.
Our proposed design, working at a granularity of lines in a program is able to model information flow from one line to another.

Another work [35] investigated even further. This work proposed a representation based on a collection of AST paths
aggregated smartly into a code vector used to predict the semantic properties of the snippet. The paper [42] also underlined
the advantages of using a recursive aggregation of AST paths as input in a DL model. Besides, [43] has shown that this
kind of model, using both AST paths and DL, could be used in combination with a hierarchical attention mechanism to add
interpretability to the predictions and increase performances. Consequently, these two concepts were retained to be used in
our designed approach : a smart aggregation of AST path is used to add more information in the input while the attention
layer with analysis of the corresponding weights is used to increase the performance and the interpretability of our method.
Other approaches were also invented with the usage of AST paths as in [40], where program dependence graph and data flow
graph were used in combination with the local information extracted from the path on the AST to model the context and the
semantic inside source code. Another method [38] used a tree-based convolutional neural network, in which a convolution
kernel is designed over programs’AST.

The reflection about the optimal representation of the source code also resulted in different input structures that aim to enhance
the capability of the model to understand the code’s intrinsic structure as in [55] where linear models were run on program
graphs-based features. Several other works were based on a graph-approach : in [39], [45] or [36], graph representation
was used to better capture long-range dependencies and graph-based DL algorithms were proposed to analyze the program
comprehension on different tasks. Researchers also tried to use an attention neural network mixed with a convolution neural
network in [53]. This method was able to detect local time-invariant and long-range topical attention features according to the
paper which again underlines the importance of attention that is used in our design.

In this quest of meaningful source code representation, even the execution information and the binary version of a program
were studied. In fact, in [28], AST paths are not considered as the optimal way to represent source code. The preferred
representation relied on program execution traces, used into an RNN. This method was also used to automatically repair
code in [31]. Also, some researchers in [23] tried to use the compositional analysis method based on symbolic execution.
Interpretability was added to the results thanks to the usage of various heuristics. Another work [41] used a deep neural
network that learns from program execution traces. Some researchers even tried to directly work on the binary representation
of the code. In [21], the binary representation was directly used and a method that relied on a maximal divergence sequential
Auto-Encoder, which tried to maximize the divergence between vulnerable and non-vulnerable latent code was developed.
Another work [51] tried to extract security-related properties from binary programs to build a unified binary analysis platform.
Even if these works showed good results, their approaches were not retained for our design.

To conclude, according to the studied related work, our designed method was created and corresponds, from our point of
view to the most promising approach.
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Figure 5 will guide you throughout this entire method section by summarizing the choices that were made and why they were
made.

Fig. 5: Table summarizing the choices made during the design of the proposed method
with an overview of the causes and answers given to the faced issues

A. Preprocessing

Preprocessing’s goal is mainly to counteract the negative effects of the intrinsic properties of our raw input. In fact, as
Timeout corresponds to unlabeled data, the first step of the preprocessing pipeline is to filter out all the Timeout labeled lines.
The creation of the labeled dataset is then achieved and data can be used in a supervised machine learning algorithm. This
transformation induced the suppression of 9253 files which corresponds to 49% of the total collection.

Fig. 6: Preprocessing pipeline :
Table indicating the proportion of vulnerabilities and the number of

smart contracts in the dataset after each preprocessing’s steps

The second step of the pipeline consists of suppressing smart contracts considered as outliers. Outliers mean programs with
a too small or too large number of lines. To be precise, smart contracts having less than 10 lines or more than 160 lines of
code are thrown away. This process suppresses 1590 programs which correspond to 8% of the entire corpus.

The last preprocessing stage is the one designed to decrease the effect of the unbalanced property of our dataset. The main
idea is to suppress data of the more represented class to increase the proportion of the under-represented class. To do that,
the entire collection of the remaining smart contracts was ranked according to their proportion of positive labels, which
means according to the number of vulnerabilities contained inside them. Programs having the lowest rate of vulnerability
presence were suppressed first. This process allows an optimization of the number of positive labels in our dataset. In our
case, 4386 files have at least one vulnerability over 8172 as can be seen in Figure 7. It means that 3786 files do not possess
any vulnerabilities. That’s why, a subsampling rate of 0.5 has been chosen. It induces that half of the smart contracts were
suppressed according to their vulnerability presence rate. Thanks to this step, the number of programs in the dataset decreased
from 8172 to 4086 elements. This diminution represent 20% of the initial entire set of contracts.
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Fig. 7: Distribution of the files forming the corpus of programs
according to their proportion in term of vulnerabilities presence

The resulting set of smart contracts obtained after the preprocessing pipeline (summarized in Figure 6) using a subsampling
rate of 0.5, was used as our reference input source in our study. This source is made of 3.55% of positive labels which is
an acceptable amount for designing a performing classifier. Consequently, our default input source is made of 235297 lines
corresponding to No Vulnerability, 3876 corresponding to Integer Overflow issue, 1475 corresponding to External Call To
Fixed Address vulnerability and finally 3329 corresponding to Exception State error. Usually, even 2% of positive labels could
be enough to achieve high accuracy if the architecture of the model is taking into account this unbalanced property of the data.
Other sources of input created by changing the subsampling rate were also studied and results can be found in the Appendix
Section.

B. Usage of Abstract Syntax Tree (AST)

The main goal of this section is to describe the representation used for modeling code as input, which corresponds to an
optimal structure. Optimal because the proposed architecture is able to model the dependencies of tokens inside the entire
contract where tokens are defined as the elements that composed the lines of code of our input corpus. To be precise the
three major components appearing in a code line are considered as tokens : variables, operators or function calls. To reach
this goal, the usage of AST is required. An AST is mainly a way to represent the syntax implicated in a program using a
hierarchical tree-like structure. It contained partial semantic information on the different interactions occurring between the
elements in a program. This structure can be used by compilers to construct the symbol table needed for the compilation.
Indeed, it aids compiler optimizations to determine the liveness of variables, etc [57]. This visualization is more focused
on rules and dependencies between tokens rather than element-wise. The usage of AST paths allows our model to access
information about the trace of the previous usage of a token and can help to associate all the operations it had been a part of.
In this way, the representation gives enough information to our model to make him able to discriminate line-level information
and thus succeed in the vulnerability classification task with high accuracy.

Thanks to AST representation, Control and Data Path (CDP) can be associated with each tokens forming a line. A path
corresponding to one token is the part of the AST origination from the corresponding node and terminating at the previous
usage of the considered token. All the nodes of an AST are strings and the ones implied in the path of interest are put into
a list to create the path representation. The last node of the list is the previous variable or last function call’s value used.
An example of paths with the corresponding AST is displayed in Figure 8 (P1 and P2 at the bottom of the figure). This
illustration should allow the reader to understand that a CDP is mainly built by going backward in the AST representation
thanks to the 2 color lines of the figure. These CDPs can not be created for operators. In our model, operators are just ignored
and are not considered as tokens. However, the term path will be used with all tokens for easier description.

Let’s take an example to show how an AST path is built and that these paths could represent both the data and control
dependencies. The example used is described by the code of Figure 8. Specifically, the line labeled as L4 is studied. This
line is belonging to one specific program and is formed by 6 tokens : x, =, y, /, foo1, and z. On the right side of the Figure
8, the AST graph of function foo1() and foo2() is displayed. In addition, the AST path corresponding to variable z of L4
is P1 and the one corresponding to x of L2 is P2. Now let’s focus on the token z, where z is a variable in a programming
language. In function foo2(), variable z is used in L4 with a binary operator and with foo1() function. Thus, due to the foo1()
function, variable z is used in a for loop, undergoes a decremental operation at L1 and is returned by the function at L2.
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Fig. 8: Example of a snippet of code with the corresponding AST representation
and with the corresponding CDPs for two variables

Consequently, this token is affected in 3 lines : L1, L2 and L4. To be able to describe fully variable z of L4 in the right
way, our representation should reflect the previously observed behavior with the usage of z in the for loop of foo1(). In this
case, by looking at P1 and P2, it can be observed that the extension of the path originating from L4 to L1 via L2 can be
done. The association of the paths of L4 with L2, which means the association of P1 and P2 would be enough to describe
the trace of variable z and successfully establish the full context of the variable. As you can see, the two paths described all
the observations needed for variable z : binary operator, called of foo1() function, for loop, return statement. Thanks to this
process, on one hand, explicit data dependencies were modeled thanks to the paths but also, on the other hand, the tokens
were modeled as they come up in the paths. This concept is applied in our model to recursively represent the entire set of
connections between tokens at different parts of the code. No other preprocessing method like program slicing is needed to
obtain this information.

C. Input Representation

Fig. 9: Token Level Embedding :
Description of the 4D representation used to represent code as input

16 MATH-598 - CSE - EPFL



IV METHOD

Thanks to Figure 9, the description of the chosen representation is illustrated and the corresponding terms and notations are
described in the following list to allow an easier comprehension of our work. The architecture built to model the inherent
properties of code is made of 4 dimensions. The first one represents the number of programs in the corpus of Solidity smart
contracts input. Each contract of this corpus is made of several functions represented by several lines. The number of lines
per program is an immutable attribute of each contract and is defining the second dimension of the structure. In fact, in
our model, a line-level distributed representation also called embedding is learned. Then, for each line of each program, a
2-dimensional representation is created. Thus, each line is represented as a 2D matrix. The first dimension of this line-level
structure is the number k of tokens in the line. Then, as illustrated in Figure 8, each token is associated with a control and
data path thanks to the AST representation of length l.

During the modeling part, the length of each program is not constant as it is a code’s immutable property. However, the
maximum number of tokens per line k and the maximum path length l (number of nodes composing each path) need to
be constant and set before usage of our model. The default settings are 4 tokens per line and a maximum path length of 16 nodes.

The list below summarizes the different dimension of the proposed input with their meaning and notation :
• D : Entire set of programs forming the corpus of Solidity smart contracts used as input.
• Di where 0 < i < Total number of programs in the input : Represents one smart contract in the set D : For the specific index i, each

program displays different length.
• Lij where 0 < j < Total number of lines in the contract Di : Each program Di consists of an ordered set of j lines of code. Thus Lij

represent a particular line in a particular program.
• R(Lij) : Line level distributed representation which is also called line-level embedding.
• Tijk where 0 < k < Total number of tokens in line Lij in the contract Di : Each program Di consists of an ordered set of j lines of code

Lij in turn consists of k tokens. Thus, Tijk represents a particular token, in a specific line, in a specific contract.
• Pijkl where 0 < l < Total number of node in the control and data path corresponding to the token Tijk in line Lij in the contract Di : Each program Di

consists of an ordered set of j lines of code Lij in turn consists of a set of k tokens Tijk and finally in turn corresponds
to a control and data path of length l. Thus, Pijkl represent a particular node in the control and data path linked to a
specific token, in a specific line, in a specific contract.

• Negative set : the subset of data made by the collection of the lines corresponding to No Vulnerabilities labels.
• Positive set : the subset of data made by the collection of the lines corresponding to vulnerabilities labels.

To improve the model performance, the transfer learning method, using embedding already trained for a similar task has been
considered. However, as our proposed structure is totally new and has never been used before, this transfer learning concept
can not be used.

D. Overview of the Model Architecture

Fig. 10: Overview of Models’ Pipeline

In this section, the global architecture of our model is described with the help of Figure 10. DL models taking a corpus
of Solidity contracts as input were implemented to succeed in the binary classification of vulnerability detection task at a
line level. It means that it outputs one label per line Lij . As previously described, the AST path representation is used to
create one path Pijkl for each token Tijk belonging to each line Lij for each contract Di. This action is represented by
steps 1 and 2 of Figure 10. The reason for using AST paths is to capture the interaction between tokens inside the same line
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and additionally, between tokens present in the previous lines to simulate the real execution flow of a program. However,
our approach needs to be designed to take full advantage of this input information. To do that, the key point that makes
our model special is the way information from the past line is used to classify the current line. During the building of the
described representation of code, several pieces of information are stored per line. To be precise, what is called end-points
indexes pointing on past lines, are stored. These indexes are used to link each token to their previous usage which aims to
add context to each line. In the example of Figure 8, for tokens of the line L4, the line L2 would be stored for z, the line
L3 would be stored for y and the line L4 would be stored for x. This information is then used during the training phase
of our model to combine information and model CDPs’ dependencies. This step is what makes our model more capable of
learning context and links between tokens inside a code. This process will be described in more details in the following section.

Then, at step 3 of Figure 10, the representation depicted in Figure 9 created after step 2 is used as input in an LSTM network
combined with a Dot Attention Layer. The sequential properties of the text were taken into account thanks to the usage of
the LSTM network as proven in [26]. In our designed model, the attention layer, invented in [5], plays a key role during
the learning process and is also the building block of the interpretability of our algorithm. The goal of this attention layer
is to mimic the human attention mechanism. To have more details about this concept, refer to Section IV.E.Attention Mechanism.

The specific network using this attention concept, defined as N1 used in Step 3 of Figure 10, allows the creation of a
token-level embedding vector, which is combined with end-points information to feed a simple feed-forward network.
The token-level embeddings created in Step 3 are distributed representation of dimension q and possess the information
corresponding to CDPs. The representations of each token R(Tijk) forming a defined line Lij are concatenated together as
researchers did in [35]. This concatenation is then used to generate a line-level representation R(Lij) using the feed-forward
network defined in Step 4. This last line-level embedding is consequently used in another feed-forward network to downsize
the vectors to finally obtain one binary label per line. N2 network learns the relationship between the line and the attributed
labels. A statistical analysis made on attention weights induces a causal comprehension of the patterns implied in vulnerabilities.

Thus our models mainly need two sources of information : the token-level AST paths and the stored end-points indexes.
Thanks to them, two sets of embedding are created in the models : the token-level embeddings and the line-level embeddings.
The creation of the last needs the end-points line-level embeddings which are simply the already created line-level embeddings
corresponding to past lines of the previous usage of tokens forming the predicted line. In terms of comparison with NLP
methods, our algorithm can be compared to the generation of embedding for each sentence and eventually each paragraph as
NLP input is made of multiple tokens per line while a paragraph is a collection of sentences. In this case, paragraph-level
embedding is used to infer the line-level vulnerabilities. However, no comparison with NLP techniques has been found for
the combination of line embedding and end-points classifiers.

E. Attention Mechanism

The usage of the attention layer is motivated by the human attention mechanism. This human process is defined by the ability
to focus on specific parts over a complex set of information, like for example focusing on important words in a sentence
or on specific parts on an image. For example, in the sentence she is eating an orange carrot, the high attention words are
eating, orange and carrot while the article a is nearly invisible for the human brain. This attention mechanism is instinctive
for the majority of human but this is not the case for machine learning models. Thus, research has been done to model this
useful process. In [62], the mathematical modeling of attention applied to NLP was created to help memorize long source
sentences in neural machine translation. Then, different types of attention applied to machine learning corresponding to
different specific tasks have been discovered. In our work, attention can be summarized as a vector of importance weights
describing the power of each token in terms of discrimination of vulnerabilities. To be specific, attention creates shortcuts
context vector. It associates a weight to each element forming the dictionary of tokens present in the input. These weights are
the illustration of the importance of the associated tokens during the prediction process. Thanks to this vector, tokens implied
in each type of issue can be identified, which allows the interpretation of the causes of the predictions. In our work, the
attention mechanism invented in [7], was implemented in the same mathematical way as in [35]. In our proposed method, an
attention layer composed of one dense layer was inserted between the two LSTM layers. The details of the implementation
can be found in the Github link of the paper [61]. This mechanism is similar to the one published in [6].
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F. Previous Line Model

The Previous Line (PL) model, described in this section, is built following the architecture presented in the previous Section
IV.D.Overview of the model architecture. To illustrate the different concepts used and the usage of the end-points line-level
embedding, the example displayed in Figure 11 is used in combination with the previously described example of Figure 8.
To be precise, Figure 11 illustrates in details steps 3, 4 and 5 of Figure 10. The analysis is consequently focused on these steps.

Fig. 11: PL Pipeline :
Diagram representing the main steps of the pipeline of the Previous Line Model

with a defined maximum number of token per line of 4
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Let’s consider only one smart contract as input. In this case, the PL model is going through each line of this program
sequentially, from the first line of the code to the last one. For each line, a collection of different CDPs with a defined
length corresponding to the tokens forming the considered line is used as input. This input matrix was created as described in
Section IV.C.Input Representation by using the AST representation. The collection corresponds to the 2D matrix of Figure 9
described earlier. This representation is used in a bi-directional LSTM network with local, multiplicative attention. Thus, this
first network learns the different paths that can be associated with tokens in the scope of a program. The output of this first
step is forming a line-level embedding of dimension (1, 100). This created embedding is stored in a look-up structure to be
used if needed.

At that point, the model asks himself if the current computed line has a link with the previous one. A link exist to the
previous line if at least one of the tokens used in the current line was used in the previous line. For example, in Figure 8, the
variable x of L2 is used in L1. In this case, L2 is linked to L1. To know that, information was already processed during the
path creation and stored in an array corresponding to the end-points data. By definition, the first line can not be linked to the
previous line. Thus, as depicted in Figure 11, the created embedding is concatenated with a padding embedding to create a
final embedding that is fed into an LSTM layer followed by two simple feed-forward networks. In this specific case, none
information is added and our PL model is just a usual DL model. This network produces a logit which is then compared to
the binary label using a cross-entropy loss function.

Then, the model uses the same pipeline for the second line. However, in this case, the second line is linked to the first line.
For example, on Figure 8, token x of L2 is linked to L1. In this case, thanks to end-points information, a lookup is done to
find the line-level embedding of dimension (1,100) created previously for the first line and a concatenation of the current and
previous line representation is done. Consequently, a large amount of information is added at this step. This process allows
the PL model to understand short term dependency between tokens.

To summarize, the usage of the end-points indexes during the training phase is used to look-up and concatenate line-level
embedding of the current line and of the previous line to capture more context and dependencies.

G. Endpoints Model

The only difference between the PL model and the Endpoints (EP) model is that the end-points information is not only
linking tokens to the previous line but also to all the previous lines having dependencies in the entire code. Moreover,
remember that using the default settings, one line is made of 4 tokens maximum that are all linked to a CDP. For the EP
model, one past line embedding per token is chosen to be concatenated into the final line-level embedding, while for the PL
model, only the previous line embedding was chosen if at least one of the tokens was linked to it. Thus the EP model adds
maximum 4 paths while the PL model adds maximum one path to the current line’s path. The Figure 12 illustrates these
differences. Let’s take a concrete example : L4 of Figure 8 is made of 6 tokens : x, =, y, /, foo1 and z. In this case, the
end-points line of the tokens are respectively lines L4, L3, L2, and L3. Remember that = and / tokens can’t have a end-points
index as operators are not able to have a real CDP because they can’t have any dependencies to the previous lines. If the
PL model was used, L2 would not have been chosen while in the case of EP model, L2 and L3 would have been chosen.
Consequently, the amount of injected information is greater using the EP model than the PL model and longer dependencies
are captured.

As noted in the example of Figure 8 for token z of L4, one CDP can not be sufficient in all the cases, even with our
input structure, to fully capture the context of the tokens interaction in the remaining lines. It happens specifically to tokens
appearing in two different lines of code. Again, let’s take the example depicted on Figure 8 : the CDP of the token z
corresponding to P1 is not sufficient to understand that the returned z goes through a decrement operation on L2. It also needs
P2 to capture all the relations.

To summarize, adding end-points line-level embedding allows to capture the context and the dependencies of tokens used
multiple times inside the entire program. However, the complexity also increases as the number of needed lookup follow the
same variation. The choice between EP and PL models should be done wisely. The method developed in [65] could be used
to evaluate the created embeddings.
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Fig. 12: EP Pipeline :
Diagram representing the main pipeline of the Endpoints Model

with a defined maximum number of token per line of 4
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H. Batches computation

The examples studied previously are considering one smart contract at a time. The PL model and the EP models were
presented as iterator on each program’s lines. Indeed this is true, but to decrease the huge computational time needed for one
run, an implementation adapted to the usage of batches was made.

This implementation was hard to develop due to one particularity of our representation. In fact, while the number of tokens
per line and the number of nodes per path is set, the number of lines per program is not. Our input, made of real-world
Solidity contracts, is by definition made of programs with different sizes.

How to create batches with different input shapes? The only possible solution is to group into the same batch programs of
the same length. By doing that, each batch is ensured to have a 3D structure with a defined immutable dimension. One of the
goals of implementing this batch size computation is to decrease the computation time. To succeed in this task, the filtering
of the batches without a required number of programs is applied. In fact, the default batch size used is 8. If in the corpus of
smart contracts, only one program has a length of 50 lines of code, one batch will be created with only one contract. These
cases need to be ignored and are thus filtered out. This filtering suppresses 19% of the studied smart contracts.

Fig. 13: Building of the Batches :
Diagram illustrating the building of batches using as a source of data the line-level embeddings

previously described of dimension (1,100) created with the LSTM network

How was conducted the computation inside the model with that kind of batches ? As our models are working sequentially
through the lines and as the end-points look-up was needed, the only way to feed the network was to build a representation by
line. Figure 13 illustrate how a batch composed of several smart contracts is built. It shows that to achieve this line-level batch
computation, a 2D matrix per line is created where the first dimension is the batch size, meaning that each line corresponds
to one program of the batch, while the second dimension is the one corresponding to the input vectors. Thus, the overall
structure is a 3D matrix of size : (Number of lines inside each program, Number of programs in the batch (at least 8), 100).
Figure 14 shows how the same concept was applied to the usage of end-points. It is also illustrating well the increase of the
complexity of the model due to the increase of look-up when end-points data are used.

Why does each simulation still take a lot of time to be computed ? The main limitation of our model and of this batch
implementation in terms of computational cost is that the different look-ups break the parallel implementation of the batch.
In fact, as for each line, at least one lookup is needed, the parallelization can’t be achieved in the usual optimal way. The
direct consequence is the drastic increase in the time needed for the computation of the entire model. Thus, the batch process
was implemented in terms of the spreading of the gradient but an effective parallelization was impossible to create due to the
intrinsic method used in our model. This is the reason why the computational time required for one simulation is high even
if the dataset size and the DL architecture are reasonable in term of computational cost.
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Fig. 14: Building of the Batches using end-points :
Diagram illustrating the computation of the batches with a model applying lookup over end-points using as source of data

the line-level embeddings previously described of dimension (1,100) created with the LSTM network
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V. EXPERIMENTS & RESULTS

In this section, answers to the following research questions are described :

• RQ1 : Can a Deep Learning model work for the vulnerability detection task?

– RQ 1.1 : How does the proposed approach behave with the Corpus of Solidity contracts as input source?
– RQ 1.2 : How does it scale if more information is added to the input ?
– RQ 1.3 : Is the information added in the middle of the model by the usage of end-points data (corresponding to

previous lines) useful ?
– RQ 1.4 : Does the model give interpretable results?

• RQ 2 : How can the model performance be improved?

– RQ 2.1 : How does the proposed program representation with a corresponding deep learning model influence
vulnerability detection task? An equivalent question would be to ask how does the EP model behaves compared
to baseline and similar vulnerability classifiers?

– RQ 2.2 : Is the increase of model complexity useful with this dataset?

To guide the reader into the comprehension of this section, Figure 15 summarizes the issues faced and the answers brought to
them.

Fig. 15: Summary of the motivations and the implemented answers to the issues
faced during the answering of the above research questions

A. Metrics

As our input is qualified as an unbalanced dataset, our goal is to reach the highest precision as possible. More specifically, our
main considered metric is the F1 score for the reasons explained below. To describe and understand the level of performances
reached by our designed models, 7 different metrics were used. The usage of the first 5 metrics was motivated by [8] while
the last two were used to analyze the importance of the threshold choice :

• False_Positive_Rate = FPR = FP
FP+TN , where FP = False Positive and TN = True negative. It corresponds to the probability

of falsely rejecting the null hypothesis for a particular test. The ideal FPR is 0.
• False_Negative_Rate = FNR = FN

TP+FN , where TP = True Positive and FN = False-negative. It corresponds to the proportion
of the individuals with a known positive condition for which the test result is negative. The ideal FNR is 0.

• True_Positive_Rate = TPR = Recall= TP
TP+FN . It calculates the ability of a model to find all the relevant cases within a

dataset. The ideal TPR is 1.
• Precision = P = TP

TP+FP . It calculates how precise/accurate our model is out of those who are actually positive. Ideal P
is 1.

• F1-Score = F1 = 2∗P∗TPR
TPR+P . F1 Score is needed when you want to seek a balance between precision and recall scores and

when there is an unbalanced class distribution. The ideal F1 score is 1.
• Average Precision = Area Under the Curve (AUC) of the Precision-Recall curve. It explains the trade-off between the

true positive rate and the positive predictive value for a predictive model using different probability thresholds. The ideal
score is 1.

• ROC score = AUC of ROC Curves. It summarizes the trade-off between the true positive rate and false-positive rate for
a predictive model using different probability thresholds. The ideal score is 1.
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B. RQ1 : Can a Deep Learning model work for the vulnerability detection task?
RQ 1.1 : How does the proposed approach behave with the Corpus of Solidity contracts as an input source?

Experimental Hypothesis : A DL model is truly learning if the train loss decrease in function of epochs, if the validation loss
follows a similar evolution and if metrics curves tend towards their ideal values before reaching a plateau.

Experiment setup :
The used dataset corresponds to the output of the previously described preprocessing pipeline using a subsampling process of
50%. This sampling process of the negative data tries to account for the highly unbalanced distribution of labels. This dataset
is consequently made of 4086 smart contracts formed by 238 203 lines/labels containing 3.55% of positive vulnerability cases.
These lines are flagged as being the sources of the three classes of vulnerabilities described in Section II.D.Vulnerabilities in
Solidity programs. The task of our model is to conduct a binary classification at a line level to predict the presence or not
of a vulnerability. The input is our designed code representation where main building blocks are CDPs for each token. This
input was randomly split into 3 sets : the test set corresponding to 30% of this dataset. The 70% remaining is further divided
into a 70%-30% training and validation set : thus the train set corresponds to 49% and the validation set corresponds to 21%
of the entire dataset. The loss used during the training is the weighted cross-entropy loss, chosen for its ability to deal with
unbalanced input. Our models were implemented using PyTorch version 1.0.

As explained in Section IV.C.Input Representation, several parameters needed to be set up to structure the input : the maximum
number of tokens per line was defined as 4, and the length of each CDP corresponding to each token was set up as 16. Several
other values of these parameters have been investigated and results are displayed in the Appendix Section. After observing
different distributions of the data, these numbers have been set as the default parameters of the proposed method. Besides, as
explained in Section IV.H.Batches computation, the filtering of batches formed with less than 8 programs of the same length
is done. This number was also chosen after an investigation of the data.

Results :

Fig. 16: Learning and Scores curves during the EP model’s training phase for train and validation set

To answer the research question, our EP model was trained on the corpus of Solidity contracts. Figure 16 displays different
learning curves of the training phase in terms of epochs. The first graph shows the loss in function of epochs for the training
and the validation set. As expected for a working DL model, the training loss is decreasing and the validation loss behaves
similarly but noisier. By definition of our validation set, this experimental observation makes sense. Besides, overfitting
behavior is not observed. Thus, this first figure displays an expected form of learning curve.
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The two last plots of Figure 16 show the evolution of the different metrics used to evaluate the performance of our model per
epoch. Again, thanks to these visualizations, the good learning behavior of our model can be observed. In fact, in the third
graph, the 3 metrics follow the same evolution for both the train and validation set. The scores increase quickly during the
first epochs and continue to increase at a lower rate for later epochs. It means that our model learns a method to discriminate
lines with or without vulnerabilities. The fourth graph represents just other metrics that also possess the expected behavior.
The FNR stays extremely low as our dataset is unbalanced. This specific metric illustrates the possible issues that can be
faced in a work made on an uneven dataset.

Fig. 17: EP Model’s ROC curve and Scores curves defined in function of the classification threshold

Figure 17 mainly comes from the fact that our model predicts probabilities to each class and then uses them in a softmax
function to turn them into binary labels with a default threshold define as 0.5. However, probabilities may be interpreted using
different thresholds. Changing this parameter can allow a change in terms of performance. This kind of approach is useful
when the cost of one error outweighs the cost of other types of errors.

The first plot of Figure 17 displays the TPR in function of FPR. This ROC curve illustrates the trade-off between both rates
for a predictive model using different probability thresholds. This graph also illustrates the robust learning behavior of our
model when the threshold of discrimination is changed. In this type of plot, a perfect model would be represented by a line
that travels from the bottom left of the plot to the top left and then across the top to the top right. A model without any
learning power would be represented by the diagonal red line. As can be seen, our models possess the behavior of a skillful
model.

The second graph displays F1, precision and recall metrics in terms of the threshold. The interesting conclusion that can be
drawn from this graph is that the choice of a threshold superior to 0.5, around 0.7 to be precise, could help our model to improve.

In conclusion, the plots displayed by Figure 16 and 17 illustrate the skillful behavior of our model. These curves prove that
our model is able to understand the input and is able to learn statistical patterns to discriminate lines with vulnerabilities from
the ones without any issues.
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RQ 1.2 : How does the model scale if more information is added to the input ?

Experimental Hypothesis : If the proposed DL algorithm was working well, the performances of the model on a richer
dataset in terms of amount of information should reach more accurate predictions than the ones on the default input source.
It would prove that the proposed approach is able to learn context from the code.

Experiment setup :

By using default settings previously defined in Section IV.D.Overview of the Model Architecture, the operators inside the
line were not considered as a token. By taking them into account, a new input dataset is created. This input is qualified as
augmented because more information is added to it. In this new configuration, operators just become paths of length one,
where the string forming the path is just the operator itself. Padding is then used to format it as all CDPs required a constant
length. Our EP model is trained with the new augmented source of data to analyze the impact of this addition of information.

To understand the changes induced by the addition of operators as tokens, a statistical investigation about CDPs is done.
In fact, as described in Section IV.B.Usage of Abstract Syntax Tree, a line is formed by several tokens that are linked to
their CDPs formed thanks to the AST representation. Thus, the label of the line can be associated with the corresponding
tokens and consequently with the corresponding CDPs. It means that one label is displayed by 4 paths, as in our case,
the same default conditions as the one described in Section V.B.RQ1.1 have been used. Aggregations of the corresponding
4 paths, build as described in Figure 9, are used as input to the model. The corresponding aggregations of the 4 paths
corresponding to different labels classes were stored and an analysis of the unique subset of the aggregations forming each
class was done. In particular, intersection and union between the ones implied in positive labels and negative labels were
studied. Figure 19 summarize our finding for the default dataset while 20 show the results on the augmented dataset. In these
tables, the column called Number of aggregation of 4 CDP paths indicates the number of paths’ structures contained in the
corresponding set. The column called Number of unique aggregation of 4 CDP paths represents the number of unique paths’
aggregation in the corresponding set over the maximum number it could have reach. For example, the maximum number of
the intersection category corresponds to the size of the smallest set discriminate by vulnerability type. Besides, some statistics
about the distribution of the number of tokens per line have been measured in Figure 18 and help to answer the research question.

Figure 21 shows the performance of our models tested on the default and the augmented dataset. Two settings defining
the dimension of the allowed number of tokens per line were also tested. As usual, the default settings defined in Section
V.B.RQ1.1 were used.

Results :

Fig. 18: Statistics collected about the number of tokens per lines in the raw input and in the augmented dataset

Figure 18 illustrates the impact of the consideration of operators as tokens in terms of the number of tokens per line of code.
In fact, thanks to this change, the mean number of tokens per line increased by 36%. The other impact is the increase of
dissimilarities between paths’ aggregations forming the positive and negative set. A comparison between Figure 19 and Figure
20 shows that the percentage of unique aggregations of paths implies simultaneously in positive labels and negative labels
decrease from 48% to 39% which make the classification easier for the model. It can be concluded that thanks to the addition
of the operators’ information, the similarity between paths’ structure implies in both positive and negative labels decrease.

The increase of the discriminatory power is beneficial as the evolution of the scores of Figure 21 induces. Indeed, for both
settings of considered tokens per line, when operators are added to the dataset, the F1-Score of the EP model increase from
6%. The standard deviation for each setting was calculated and the results are considered as significant. It can be concluded
that the addition of operators into the set of considered tokens induce an increase of performance of the EP model by
decreasing the similarity between path implies in both positive and negative labels.
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Fig. 19: Statistics about the collection of CDPs’ aggregations corresponding to 4 tokens in each line implied
in negative and/or positive labels for the raw default input

Fig. 20: Statistics about the collection of CDPs’ aggregations corresponding to 4 tokens in each line implied
in negative and/or positive labels for the augmented dataset considering operators as tokens

Besides, the same analysis was applied to not aggregated paths (corresponding results can be seen in the Appendix Section)
and it was concluded that 88% of the paths implied in the positive labels were also applied in negative labels. It underlines
the important similarity between the different samples of the dataset which induces the low amount of information contained
in the input. From the table displayed in Figure 20, it can be seen that the amount of information present in the data stays low
but lager than for the default input data without operators. It also means that by adding even more information, the difference
in terms of performances should also increase. Thus, one easy way to improve the model performances is to take into account
even more tokens. For example, the nodes forming the AST representation that are not variables or operators could be taken
into account.

Fig. 21: Comparison of the results obtained using the EP model on the raw input and
on the augmented dataset considering operators as a tokens
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RQ 1.3 : Is the information added in the middle of the model by the usage of end-points data (corresponding to previous
lines) useful ?

Experimental Hypothesis : If information only remains in end-points corresponding lines and if the rest of the information
contained in the data is destroyed, the proposed DL approach should be able to classify a number of vulnerabilities
proportional to the amount of information given by the end-points lines. According to our approach, the best results should
be found with the usage of all previous lines information.

Experiment setup :

To answer this question, a synthetic dataset has been created. The idea of this new input source is to keep the same structure as
our raw data but to change the amount of information encoded inside. To build it, during the formation of our representation,
the raw input data is changed. The method used is simple : the real raw data is copied, lines according to their labels are
selected and a transformation at the scale of the CDPs, which means at a token level is applied. The indexes of end-points
are not modified to be able to use them to bring the same usual amount of information. The main goal of this manipulation
is to locate information to one specific category and study the behavior of our models consequently.

The analysis of the behavior of the proposed method on an input where information only remained inside end-points is done
by designing a specific experiment. All the paths of the entire input data were randomized. This manipulation induces the
destruction of all information contained inside the data. Then, an iteration on each line of the programs was conducted, and
according to the labels of the line (only positive lines were transformed) a constant pattern, which was a defined constant list of
paths, was injected into the end-points lines linked to the positively labeled current line. This action allows the information to
only remains in the paths corresponding to the end-points lines. Be aware that, with this process, the current line is formed by
only random paths. Also, in the designed experiment, a differentiation between the previous line and farther away lines has been
done. The previous line represents short dependencies (usage of a token twice in two neighboring lines) between tokens while
farther away lines represent long term dependencies (call of the variable into another function). Details about the difference
between these two categories of lines are explained in Section IV.Method. As usual, default parameters described in Section
V.B.RQ.1.1 have been used. The pattern added to bring information is formed by a first path of length 16 only composed of a
unique token, a second path of length 16 only composed of a unique token different from the first path, and finally composed
of a third and fourth padding path. The experiment will be divided into 4 simulations as shown in Figure 22. To be clear, let’s
take the example of Previous Line Experiment : in this case, if the end-points corresponds to the previous line, the pattern
is injected into the previous line. The end-points corresponding to farther away lines will be randomized as the current line.
The other experiments are just defined by a change in the subset of line targeted by the injection of the pattern. Then, the EP
model is trained and tested on these different synthetic input dataset where information is situated at different strategic locations.

Fig. 22: Experimental Procedure used to build the different syntethic datasets

Results :

Before analyzing the performance of the model, an investigation on the distribution of the end-points is done to understand
the amount of information brought by them.

Figure 23 displays the proportion of paths implies in different end-points cases. This analysis is crucial to be able to understand
the results of the different simulations. A line is made of 4 tokens and each one of them is referred to one end-points index.
This reference is called end-points information. If an index corresponds to the previous line, the corresponding path goes to
the previous line category. If the index corresponds to a past line that is not the previous line, it goes to the farther lines case.
If the index is 0, it goes to the null case. From Figure 23, the unbalanced property of the dataset can be observed. Besides, the
null proportion is approximately 60% inside the positive set which means that the amount of information encoded into end-
points is not large. The last interesting fact is that the proportion of previous lines cases is twice bigger than the farther line case.
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Fig. 23: Distribution of the end-points paths, which means at a token level, on the raw dataset

Fig. 24: Statistics about the type of end-points information encoded by the 4 CDPs for each line on the raw dataset

Figure 24 displays the implication of end-points indexes at a line level while the previous figure was created at a path
level. A current line is said to be implied in father lines cases when one out of 4 of the end-points indexes linked
to it refers to a past line that is farther away than the previous line in the code. In the same way, a current line is
said to be implied in previous lines cases when one out of 4 of the end-points indexes linked to it make referenced
to the previous line in the code. The main conclusion, given by Figure 24, is that 67% of the lines using end-points
indexes are implied in both the previous line and the farther away cases. This observation represents an overlap between the
information brought by the two sets and thus decreases the positive effect of using both sources of information at the same time.

Fig. 25: Experimental results coming from EP model trained on the different synthetic datasets

Figure 25 shows the results for the different designed experiments. The first observation is that the score achieved by the
Farther Line Experiment is higher than the Previous Line Experiment. It means that farther lines end-points contain more
information than the previous line information even if the set of indexes corresponding to the farther lines is twice smaller.
Long term dependencies form easier patterns to recognize for our proposed method and are thus classified more easily.

Besides, from the design of our model, the hypothesis is that the EP model captures more context information and thus
should overcome the PL performances, modeled by the Previous Line Experiment. According to Figure 25, Both method
Experiment obtains a better score than Farther Line Experiment and Previous Line Experiment. This observation corresponds
to the expected behavior described in the experimental hypothesis. The difference of the scores obtained with both sources
compared to the ones made with only one subpart of the end-points information is small. This fact can be explained by the
overlap of the information described in Figure 24, which induces a high similarity inside the main part of the context brought
by both sets. It can be concluded, as the EP model performs better with the father lines information and as it is even better
when the entire end-points set is given, that the information bring by the end-points is definitely useful and allows a better
comprehension of the code.
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To conclude, even if end-points information is small, and even if the overlap between the previous line and the farther away
line reduce the amount of information bring by this set, the addition of both stays valuable as it helps the model to learn in a
more performant way and thus help it to understand the context more easily. A way to increase performances of our proposed
method would be to increase the proportion of end-points information encoded in the input data.
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RQ 1.4 : Does the model give interpretable results?

Experimental Hypothesis : An interpretable model is a model that can explain its predictions. Consequently, in our case, if
the model is interpretable, it should be able to identify some of the causes of the predicted vulnerabilities.

Experiment setup :
Refer to Section IV.E.Attention Mechanism to obtain more theoretical information about attention mechanisms. In this
experiment, attention weights, which correspond to the weights created by the attention layer inside the model, were collected.
To be precise, for each token inside a line, the 3 highest weights corresponding to 3 AST path nodes were selected. Knowing
that the maximum number of tokens per line is 4, it means that per line a number between 1 and 12 weights were selected
and linked to the node they represent with the usage of a dictionary. Besides, the entire collection of the coefficients was
saved in another dictionary. Thanks to that, the normalization of the weights was achieved. Each attention weights obtained
during the test phase of our model was divided by its overall occurrence in the entire dataset. In fact, all the quantities used
in the production of the results correspond to a relative importance measure. This method allowed to give more importance to
tokens that are less frequent in each type of vulnerability while tokens that are always present are more penalized. It means
that if a token is present in a high frequency in the entire data it will be less important than a token present only 10 times.
With this process, more importance is given to rare tokens able to create a vulnerability only due to their presence. Another
criterion of selection was set thanks to the study of the distribution of the entire collection of weights : a minimum value
needed to be reached by the weights to be selected. This threshold was set as 0,075. The goal of this manipulation was to
filter out meaningless weights. Then, classic statistical analysis was conducted on the gathered collections.

Results :

Complete results are displayed in the Appendix section, while the more important results are illustrated in Figure 26. The
histograms A, B, C represent the relative importance of the Top10 tokens implied in each type of vulnerability. It means that
from these graphs, a broad idea about which tokens are causing which type of vulnerabilities can be obtained. Consequently,
these 3 graphs summarize the causes of each vulnerability type which allows the model to gain interpretability. Indeed,
some causes can be identified : type 1 is mainly due to expression and root nodes, type 2 is mainly due to trueBody
nodes and type 3 is mainly due to statements and parameters nodes. Besides, a comparison was done with the relative
importance of each token implied in label 0 (which means no vulnerability). All the tokens are more implied in label 0 which
makes sense due to the unbalanced dataset. It means that found causes need to be nuanced because the tokens identified
to create vulnerabilities are also building blocks of well-functioning code. This observation is logical as it corresponds
to the intrinsic properties of the vulnerability detection process and is the reason explaining why this task is difficult to succeed.

In addition, an investigation about the implication of specific tokens into several vulnerability types at the same time was
done. Histogram D is illustrating this search where a count corresponding to vulnerability type per token is displayed. This
count represents the number of times each token is implied into a vulnerability. It means that the maximum score a token
can have is 3 and it would mean that this token is one of the causes for the 3 different studied types of vulnerabilities at the
same time. If the count is 2, it means that the token is implied into two vulnerabilities type so it could be implied in type 1
and 2 or type 1 and 3 or type 2 and 3. From this search, the importance of the identifier nodes is underlined in the 3 types at
the same time. Besides, by doing the same analysis for only two kind of vulnerabilities, some common causes for both types
can be identified : more important common causes of type 1 and 2 are statements and eventcall nodes, of type 1 and 3 are
statements nodes and of type 2 and 3 are argument and rigthExpression.
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V EXPERIMENTS & RESULTS

C. RQ2 : How can the model performance be improved?

RQ 2.1 : How does the proposed program representation with the corresponding deep learning model influence
vulnerability detection task? An equivalent question would be to ask how does the EP model compared to baseline and
similar vulnerability classifiers?

Experimental Hypothesis : If the proposed method reach better performances than baselines, proposed program representation
with the corresponding DL model influence vulnerability detection task in a positive way.

Experiment setup :

To answer this research question, the performance of our two models, PL and EP, are compared with different baseline
scores. In fact, showing that our designed models perform better than baselines on the same task would prove the
advantage of using our described method made with the input representation based on AST mixed with the end-points
information injected inside the model. Several baselines were tested on several different kinds of input. In fact, trained
most classes of classifiers available on Scikit-learn were used [59]. The studied and compared baseline used to classify
vulnerabilities were the Logistic Regression model, the Random Forest model, Decision Tree Classifier, Gaussian Naive
Bayes model, and SVC model. In the results, only the best scores of these baselines are shown. The best performance is
always reached by the Decision Tree Classifier. Scores corresponding to each baseline model can be found in Appendix Section.

Two different input sources were used in combination with the baselines :

• Bag of words - Path nodes (BOW-Node) : The simplest considered input baseline was build using a bag-of-tokens present
in each line, which means that a dictionary of all the unique nodes forming CDPs was used. In this baseline, only raw
information of CDP composed the input. There is no temporal structure that allows the evaluation of the interest in the
time-related data.

• Bag of words - Paths (BOW-Path) : The other source of input is similar to the BOW-Node one. However, instead of
using a dictionary of all the unique nodes, a dictionary comprising all the unique paths of all the lines appearing in the
training set was used. With this process, the value of CDP information considering its temporal structure is measured.
BOW-Node is made at a node level while BOW-Path is made at a path-level. This can give us a broad idea of the amount
of information contained in just the path features.

A third baseline was also created to assess the skills of our model : Vulcan No End-points - Vul-NoEP : This model
corresponds to our designed pipeline without any usage of previous lines information. It thus only corresponds to a DL model
made of a Bi-LSTM layer with an attention layer. It corresponds to the suppression of the line-level embedding of tokens
end-points which are input to Network 4 in 10. It allows a comparison with our model to infer if the usage of the developed
line embeddings affects positively the prediction of the overall model. A lower performance for this model compared to our
implementation using end-points is expected to prove the effectiveness of our approach.

For the PL model and EP model, the default settings described in section Section V.B.RQ.1.1 have been used. To find the
standard deviation, several simulations were run and statistics were created on their results.

Results :

Fig. 27: Scores comparison between implemented baselines on the BOW-Node input

The first conclusion that can be drawn is that the majority of baselines have low performances with the BOW-Node input
source (Figure 27) while one of the baselines stands out : Decision Tree classifier. In fact, the F1 score reach by this model is
quite high for a baseline. It means that a certain amount of information is contained into AST’s nodes even without temporal
dependencies and is well understood by this baseline classifier. However, it is not sufficient for designing a reliable tool.
According to this observation, it would be interesting to study the combination of features learned by our deep model with
tree-based models as it was done in [64].
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Fig. 28: Scores comparison between implemented baselines on the BOW-Path input

On the BOW-Path input (Figure 28), both the Decision Tree model and the Logistic Regression model increase their F1
scores. This mainly means that the amount of information contained in paths is greater than the one contained in unique
nodes. This suggests that the temporal aspect of the proposed paths is important to their predictability. Besides, the increase
of the performances for Logistic Regression is higher than the one for the tree-based classifier. This result is the illustration
of the importance of the creation of an adapted input representation for a particular chosen model : thing that has been done
in our proposed method.

Fig. 29: Scores comparison between the implemented baselines on the different input sources and between the EP and PL models

Figure 29 illustrates the comparison between baselines scores for each input source and the performances achieve by EP and
PL model. It can be concluded that baselines, even if using a richer bag of words as input, are significantly surpassed by our
designed EP and PL models. Besides, the Vul-NoEP score is as expected lower than scores PL and EP models. The positive
value of our approach that takes into account the information flow between the different lines of code is by consequence
proven. Thus, our designed approach mixing representation with CDPs and DL model is capturing more information.
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RQ 2.2 : Is the increase of model complexity useful with the default input dataset? In other words, is the increase of
complexity due to the usage of the EP model is worth it or should we use the PL model instead ?

Experimental Hypothesis : If the increase of the model complexity worth it, the performance of the EP model should be
significantly superior to the scores obtained by the PL model. If it’s not the case, it means that the input source does not
have the optimal structure to take advantage of the EP model.

Experiment setup :

To answer this question, an investigation about CDP is done. The results of statistical investigation made in Section V.B.RQ1.2
about the number of token per line and the unique paths’ aggregation on the input source considering operators were used
(Figure 18 and 20).

Besides, the default simulation described in Section V.B.RQ1.1 is used to obtain the performance of the EP and PL model.
The running of each model was repeated 5 times to be able to calculate a standard deviation of the performances. Thanks to
this pipeline, the metrics and the F1 standard deviation for both models were obtained. A robust comparison is thus enabled
and the answer to the research question can be described.

Results :

Fig. 30: Scores comparison between the PL Model and the EP Model on simulations
made with default settings on the augmented dataset

The first conclusion that can be drawn comes from Figure 30 : both models have the same accuracy when used with our
input source considering operators. It can thus be concluded that the increase of complexity due to the usage of the EP model
instead of the PL model do not worth it. Finding the reasons for explaining this fact would help us to understand how to
improve the EP model.

To find the causes of this observation the Figure 20 is analyzed in detail. Our first conclusion is that within each set of
vulnerabilities, the number of unique paths’ aggregations is really small meaning that the set of data does not possess a lot
of diverse information. In fact, only 12232 paths’ structures are forming the negative unique path set over 80944 possible,
which only represents 15% of the entire set of negative paths. It means that the useful information is only contained in
approximately 15% of the negative dataset. The same fact is observable for each vulnerability of the positive labels even if
these subsets are made with fewer paths’ embeddings. The diversity in the positive dataset seems higher than in the negative one.

The second conclusion that can be drawn is that each set corresponding to each type of vulnerability is mainly not made by a
similar path’s embeddings. In fact, Figure 20 shows that the intersection between the 3 sets is made of 316 paths’ structure while
the union is made of 3283 paths’ aggregations. These numbers underline the fact that only a small amount of the concatenated
paths implied in positive labels are also implied in the 3 different types of vulnerability. However, the union of the 3 subsets is
made with 819 unique different paths’ aggregation which means, as before, that the similarity between the positive paths is high.

The fact that both negative and positive paths set are made of similar concatenated paths could be an advantage that our model
could use to be able to achieve high classification performances because it could be easier to detect the properties of each set
and thus to discriminate them. However, the last line of Figure 20 investigates the overlap of information between the positive
and the negative set. The huge part of paths’ embeddings implied in positive labels is also part of the one creating negative
labels. To be precise, 39% of paths imply in any positive labels are also implies in negative labels. The same kind overlap
has been found (Figure 24) inside the end-points data that induces a decrease of the expected added amount of information
when using the EP model.

This global similarity property of the dataset can be explained by a higher level of the representation : the number of tokens
per line. In fact, in our settings, the maximum number of considered tokens per line is 4. However, according to Figure 18,
the mean and median number of tokens per line is respectively 2.8 and 2, numbers which are definitely too small to be able
to take full advantage of the EP model compared to the PL.
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Consequently, these different observations have shown that the same information is creating negative and positive labels,
which makes our data extremely hard to discriminate, even for a clever model. The overlapping of the information explains
the equal performance of the PL and EP models. In fact, the amount of information added by using the EP model is small due
to the inherent similar data contained in the dataset. To conclude, even when the augmented dataset, which is richer than the
default one, is utilized as an input, it’s not useful to use the EP model and consequently, to add complexity, compared to the
PL model. In fact, the current dataset does not have enough discriminatory power. Thus, this described investigation method
allows the user to know when the EP model could be used in optimal conditions. This is really useful to be able to deal
with the complexity/accuracy trade-off. In addition, as shown in Section V.B.RQ1.2, adding information into the dataset could
easily improve the performances of the model. EP model could be used with some DSL that fills the described requirements
(high number of tokens per line and diversity in the path). In this case, our proposed pipeline could perform extremely well.
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VI. CONCLUSION AND FUTURE WORK

This work presents an important first step in detecting vulnerabilities for domain-specific languages and analyzing programs
written in Solidity. The semantic-rich features method introduced captures intricate control and data dependencies and
successfully classifies 3 types of vulnerabilities. The representation introduced using the AST paths combined with a model
using end-points information has been shown to outperform baselines scores. The intake of the end-points information has
been proven with the design of an experiment using synthetic data and with baselines. It allows a better comprehension of
the natural structure of the code. Our designed pipeline is thus able to capture more intrinsic code information than other
models. Information from program tokens, although semantically incapable of capturing vulnerabilities, increases the accuracy
of models. Interpretability was added to the model thanks to usage of the attention mechanism.

Taking into account the operators has shown a significant improvement in the performance. This observation induces that, by
adding even more information in the data(with for example the consideration of the function name as tokens) the difference
in terms of performances should also increase. Another way to increase the amount of significant data inside the input would
be to use the one-hot encoding method. In fact, operators are just paths of length one, where the string forming the path is
just the operator itself. By applying the one-hot encoding technique on the entire set of operators, the amount of information
should be definitely more important and the performances of the model should be increased.

It would also be interesting to use a new source of input to verify the different findings of this thesis. The source [63] could
be used as it consists of source codes of 1.27 million functions mined from open source software, labeled by static analysis
for potential vulnerabilities. Trying a corpus of code, with the required structure to take full advantage of the model design,
with for example a higher number of tokens per line, or a corpus made of longer programs to have a higher number of
end-points dependencies, could allow better performance than some state of the art tools. The multi-classification task could
also be studied. Besides, binary classification with different label grouping criteria could be investigated. By that, it means
that the positive set could be made with different vulnerabilities than the one used during this project. Doing that, it would
be possible to understand which vulnerabilities are easier to classify and the reasons why this is the case.

Investigate how our models provide an advantage over extant tools for vulnerability analysis for Solidity would also be useful.
To do that, the usage of Timeout dataset corresponding to unlabeled data, described in Section II.C.Labeling Process would be
required. Our own model would be trained on this unlabeled dataset and the predictions would be studied and compared to gain
insight about the causes of these specifics labels. A manual investigation could be used to verify our results and to analyze the
potentials founded vulnerabilities. The amount of issues found in Timeout lines could be significant because it could provide
a quick solution to detect vulnerabilities in programs which existing state of the art tools are incapable of providing in real-time.
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VII. APPENDIX

This section summarizes the different researches done during the entire master thesis. Some were not useful in the building of
the previous thesis/paper but could be useful for the continuation of the project. These results are thus less interesting than the
previously described ones because they mainly correspond to early stages results found along with the creation of the project.

A. Set up of the environment : NFS, OpenStack, Google Cloud

The main goal of this section is to describe the process used to obtain the data and work with it from a private computer. It
is definitely useful to save this process to be able to recreate the same kind of environment in a more optimized way.

Fig. 31: Diagram illustrating the settings used with NFS and Openstack to be able to work from private computer

The first working space was made with Network File System (NFS) and Openstack, two tools given by the MIT IT service.
NFS is a distributed file system protocol allowing a user on a client computer to access files over a computer network.
OpenStack is a set of open-source software for deploying cloud computing infrastructure. As illustrated on Figure 32, to
obtain the data stored on NFS, the owner folder of the data was mounted into a created session on one OpenStack cloud.
Mounting is a process by which the operating system makes files and directories on a storage device available for users
to access via the computer’s file system. Thus the NFS data became available on the OpenStack cloud. Then, the GitHub
repository containing the source code of our method was clone on this session. The OpenStack machine became a usable
working environment to develop our tool. However, as it was more practical to work on the local computer, both directories
containing the GitHub directory and the data were also mounted from OpenStack instance to the local environment.

Fig. 32: Diagram illustrating the settings used with NFS and Google Cloud to be able to work from private computer

On the OpenStack cloud, it was not possible to access to any GPU. Thus, to be able to compute our proposed pipeline using
GPU to decrease the simulation time, the Google Cloud platform was used. In this case, as previously, the folder containing
data from NFS was mounted on an OpenStack session. Indeed, due to the file protection policies of NFS created by MIT, it
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was not possible to mount the NFS folder directly on a Google Cloud instance. The data directory was also, as previously,
mounted on the local computer. Then, from our local environment, this folder was downloaded to the used Google Cloud
instance. The GitHub repository was also cloned to the machine. Consequently, a working environment was set up on the
instance and allowed access to GPUs. Finally, to be able to work from our local computer, the GitHub repository was mounted
from Google Cloud instance to the local environment.

Thanks to these two processes, working environments using OpenStack or Google Cloud were created to allow effective work
with practical settings.
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B. Enable GPU usage

Our proposed model was firstly implemented on CPUs. Then, to decrease the huge amount of time needed per simulation, the
GPU computation was enabled for our model. To be precise, as our model was implemented with Pycharm, the library Cuda
was used. Figure 33 shows the results of the time analysis done on one simulation of our PL model using the raw data. The
conclusion is that GPU computation allows a decrease of the running time : it save 66% of the initial simulation time. In fact,
the diminution of time achieved goes from approximately 13 hours to 4.5 hours for 50 epochs.

Fig. 33: Time Analysis on the PL model with and without GPU
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C. PL model using a function level representation

In this section, the PL model was used with a different input representation compared to the previously described input
structure in Sections II.Background and IV.Method. Instead of using a corpus of Solidity contract, the collection of the function
forming this entire set of contracts was used. Indeed, the first dimension of the representation corresponding to each program
described in Figure 9 was transformed into another one made at a function-level iterating on the different functions making
these contracts. Inside each function, a maximum number of lines per function was selected. In our case, a maximum of 10
lines was selected. The negative subsampling process was also implemented at this function-level during this line selection.
Thus, compared to before, the batch computation is easily enabled and the filtering out of some function due to the batch
method was not required. The studied dataset is consequently bigger. Otherwise, the same kind of simulation and the same
settings were used alongside this section. The raw dataset, without operators as tokens was set as input source. However, the
amount of line in the data was bigger as a similar negative subsampling method was implemented with a lower filtering out
percentage. The goals of this section are to analyze and understand in depth the performances of the PL model using this
new kind of input. It was implemented at an early stage of the project and was used as a first step to assess and to convince
ourself about the value of the proposed approach.

1) PL model analysis: The first step’s goal was to create a default score to allow a robust comparison with the different
simulations results found along the research process. Figure 34 shows the default results obtain with the following defined
default settings :

• Optimizer : SGD
• Number of epochs : 50
• Learning rate : 0.01
• Maximum number of nodes per path called path length : 16
• Labels consider in the positive class : 1, 2 and 3
• Maximum number of tokens per line : 8

Fig. 34: Results of the PL model using the default settings

2) Path Length Optimization: One of the crucial parameters was the maximum number of nodes allowed per path chosen for
the input formatting process. As explained previously in Section IV.C.Input Representation, each line possesses a maximum
number of tokens which is set to 8 in this section. These tokens are linked to a corresponding AST representation giving
birth to CDPs. The CDPs’ length was the studied parameter of this subsection. Thus, to summarize, our input was made of
Solidity source code divided into functions that can possess 10 lines maximum. These lines made of 8 tokens could be linked
to 8 CDP’s of different length. Figure 35 displayed the results of the PL model used with the previously described defaults
settings with different values of path length.

Fig. 35: Results of the path length analysis using the PL model on the raw dataset

The path length corresponding to 32 is the optimal parameter. This observation makes sense as, compared to 16, the CDPs
contain more information that can be understood by our model. In terms of the F1 score, the path length of 64 is approximately
equivalent to the one of 32 but it was decided to not keep 32 as optimal because it required a lot more computation power.
The trade-off between computation power needed and the performance of our model was not worst it for a path length of 64.
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3) Randomization of the paths: In the PL model, at ths stage of the implementation, the lookup inside the model was
searching for previous paths and not previous lines as did on the final implementation of the PL described in section
IV.Methods. By doing this selection of past information at a path level, several CDPs could have been selected to corresponds
to the previous path’s CDP. To select the corresponding path, two methods were implemented : the first one was based on
a random choice of one path in the set of previous CDPs (which correspond to the label ’WITH Randomization’ in Figure
36) while the other process was based on the selection of the closer path in term of distance achieved by looking at the
proportion of common nodes in the CDPs (which correspond to the label ’WITHOUT Randomization’ in Figure 36). This
random choice analysis was made with the default parameters presented previously and with different path length. Figure 36
shows the results illustrating of the influence of the combination of the path length and the randomness of the paths’ selection
parameters. The best configuration for this early stage PL model was found for a maximum number of nodes per path of 32
and with a non-random selection of the previous information. This configuration was set as the default one for the following
simulation made during the study of the PL model.

Fig. 36: Results of the study about the combination of the path length and the randomness of
the paths’ selection parameters using the PL model on the raw dataset

4) Parameters Optimization : Learning Rate, Optimizer and Number of Hidden Unit: A study about parameters optimization
was done for several of them. Results are displayed in Figure 37. Thanks to these observations, the search dimension was
decreased and the combinatory grid search between the parameters was tried on a reasonable search space. The usage of
designed tools for optimized grid search was consider until the paper [68] was encounter. To be precise, the learning rate was
set to 0.01 and a search for the optimal parameter in term of optimizer was conducted in the following set [’SGD’, ’Adagrad’,
’Adam’] and in term of hidden number of nodes was conducted in the following set [100, 500, 1000]. The other parameters
were kept as the defaults one. Results are summarized in Figure 38.

Fig. 37: Learning Rate, Number of hidden unit in the network and Optimizer Grid Search Analysis

Fig. 38: Combinatory Grid Search Analysis on Optimizer and Number of hidden nodes parameters

From these results, the optimal parameters were set and considered as the default parameters for the continuation of our
study: learning rate = 0.01, optimizer = SGD and number of hidden nodes = 100.
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5) Weights influence: As it has been explained in the dataset description of Section II.D.Vulnerabilities in Solidity programs,
one of the main issues to deal with is the fact that the dataset is unbalanced with too many negative labels compared to the
positive ones. To deal with that, a weighted loss was used. It means that a higher weight is attributed to the part corresponding
to positive labels to try to counterbalance its lower proportion. Figure 39 describes the influence of these weights on the
performances of our model.

Fig. 39: Weights Influence Analysis on the PL model’s performances

The influence of the defined weights is visible and positive meaning that it helps our model to perform well. Thus, [9,1]
weights were set as the default weights parameter. In addition, it can be observed that simulation without weights improves
precision while creating bad recall scores which makes sense when you look at the definition of these both metrics. In fact,
without a weighted loss, almost all data-points would be predicted as negative sample due to the unbalanced property of the
dataset. It means that the recall score, which is the number of actual positive labels getting predicted right, would be very
poor, while those few that do get predicted as positive would be right, which involves a high precision. These results has
shown that our weighted loss is working fine and that its usage improve the performance of the model.

6) Label Grouping: In this section, the performances of our model on several different targets were studied. In fact, by
default, the positively labeled vulnerabilities were the ones of type 1,2 and 3 cases while all the other ones were categorized
as negative. Thus, an investigation was conducted to analyze the impact of the change of the defined positive targets. It has
been tried for example to set all vulnerabilities as positive labels or to classify only one type as positive labels. Figure 40
summarizes the results of this analysis.

Fig. 40: Labels Grouping Analysis on the PL model

From Figure 40, it can be concluded that the Integer Overflow (type 1) vulnerability is the easiest one to detect. The score
obtained is really high for this task. Besides, it can be observed that detecting the External Call To Fixed Address vulnerability
(type 2) is harder and that the Exception State vulnerability (type 3) is even harder. When these different labels are grouped
by pairs as positive labels, the scores followed the same logic. Another fact that can be added is that the score on detecting
the entire set of vulnerabilities is not bad. For the following experiments of the section, the labels [1,2,3] were kept as
the default ones but these results need to stay in our mind when the interpretation of the results of the model will be developed.
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7) Multi-classification analysis: During our investigation, a multi-classification task was also asked to our model. By looking
at the data, it can be observed that this task should be really difficult for the model as the data is extremely unbalanced for
the majority of labels’ types. Three different multi-classifications were tried : all the labels were studied at the same time,
and also two different subsets of labels were considered while all the remaining lines were set as negative class. The two
considered subsets were the one corresponding to the most abundant classes which were [1,2,3] and [1,2,3,4]. The package
metrics from sklearn was used to obtain the F1, precision and recall scores on this multi-classification task. More specifically,
the macro average metric was chosen. Figure 41 displays the results for the different described settings:

Fig. 41: Multi-classification Analysis on the PL model

The founded results are surprisingly really good. However, these observation are explained by the predominance of
the nicely classified Integer Overflow (type 1) vulnerability due to its higher occurrence and also by the fact that high
scores are achieved easily as some classes are poor in terms of the number of vulnerabilities in the data. A change of
metrics have been considered and was studied during the development of the project to overcome this issue. According
to these results, it would be extremely interesting to investigate the performance of the EP model on this multi-classification task.

8) Visualization: To visualize and understand our approach, different methods were implemented and tried on the PL model
using the default settings. Figures 42 and 43 show the different visualizations used in our study. The created plots were mainly
made to verify the good behavior of our model. Indeed, the first plot, on the left part of Figure 42, corresponds to the loss in
function of the epochs for the training part of our model. This curve indicates a learning model that corresponds to the wanted
observation. The second plot, on the right part of Figure 42, represents the different embeddings for some specific epochs. To
understand and assess the qualities of our designed embeddings, a dimension reduction was applied to them. Two plots are
displayed per epoch : the left one is done with a PCA while the right one is done with t-SNE. In a perfectly working model,
clear clusters should appeared near the end of the training. It’s not the case here even if some clusters corresponding to Integer
Overflow vulnerability (red ones) are more visible than the others.

Fig. 42: Visualization methods : Training Loss, Embeddings Visualization

The last plots displayed in Figure 43 represent the gradient values through the different layers of our model for different
epochs. These plots give us more insights to understand our model and to check his good behavior. For example, this
visualization underlines the importance of the attention layer and of the last layer because, for each one of these layers, the
gradient’s value is higher compared to the other part of the network.
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D. EP model analysis and observed behavior

In this section, the input described in Section II.Background and IV.Methods was used. The method described follows exactly
the described approach of Section IV.Methods.

1) Learning Rate Optimization: During the investigation of the model, it has been found that the learning rate was an
important parameter to be able to converge to minima. Consequently, a grid search focused on this parameter was done.

Fig. 44: Learning Rate Grid Search for the EP model

According to Figure 44, the most meaningful learning is achieved with the learning rate of 0.001. This learning rate is good
at the beginning of the training. However, during the learning process, it sometimes happens that the model does a step
back in terms of loss value around 0.35. This behavior is caused by the fact that the learning rate is too big at this phase of
training. Thus, to fix this issue, the usage of a more complex optimizer compared to SGD that can adapt its learning rate and
its momentum during the training phase (Adam, Adagrad) is useful. Also, the usage of an optimizer that uses a momentum
can improve the speed of the optimization process in concert with the step size, improving the likelihood that a better set
of weights is discovered in fewer training epochs. Consequently, Adagrad was selected as the best optimizer for our model
because it allowed the usage of an adapting learning rate and momentum that help to find global minima. Other optimizers
like Adam and Adamax were tried but with less success.

2) Batch Normalization: As the model is dealing with NLP input, meaning that our input matrix refers to tokens, the
normalization of the raw input data could not be done as it would not make any sense. In fact, it would induce the loss of the
main part of our information. In DL, normalization is used for several reasons. Let’s take an example : before the normalization
of the inputs, the weights associated with these inputs could vary a lot because the input features present different ranges varying
from let’s say 0 to 40000. To accommodate this range of differences between the features, some weights would have to be large
and then some have to be small. In the case of larger weights then the updates associated with the back-propagation would also
be large and vice versa. Because of this uneven distribution of weights for the inputs, the learning algorithm keeps oscillating in
the plateau region before it finds the global minima. To avoid the learning algorithm spend much time oscillating in the plateau,
the normalization of the input features is used such that all the features would be on the same scale. Then, since the inputs
would be on the same scale, the weights associated with them would also be on the same scale. It would thus help the network
to train. In our specific case, inputs are already on the same scale and consequently normalization is, by definition, not required.

One other way to apply normalization in our case is to use the batch normalization process between the layers of our model
to rescale the hidden stay to help our model to learn from it. The activation values, meaning the output of the different layers,
act as an input to the next layers present in the network. So, the previous potential input transformations do not matter at
this stage (whether normalized or not), because the activation values would vary a lot as the information spread into the
network. To bring all the activation values to the same scale, the normalization of the activation values such that the hidden
representation called embeddings in our case was used to get improvements of the training speed.

Fig. 45: Batch Norm effect on the EP model’s perfomances

Figure 45 displays the performances of the EP model using or not the batch normalization process. In this case, the usage of
the batch norm made the training more meaningful in a smoother way when looking at the training curves. The batch norm
allows a decrease in precision and an increase in the recall while keeping the F1 score constant. Alongside the project, in
some cases, batch normalization has been shown to be mandatory to allow convergence of the model.
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3) Input Vocab: A method to improve performances of the EP model was tried : the number of different tokens in the
vocabulary dictionary was increased. In fact, some numbers were added to the nodes identifiers to be able to differentiate
nodes that were following themselves in the AST representation. For example, some nodes were called ’BExp0’ for the first
node of this type in the representation, ’BExp1’for the second node of this type in the representation and ’BExp2’ for the
third node of this type in the representation. This change induced the creation of a vocabulary made by 250 different nodes
while the default one had only approximately 60 vocabulary words. The effect of this change was analyzed and results are
shown in Figure 46.

Fig. 46: Input Vocabulary impact on the performances of the EP model

The addition of the numbers into the nodes identifiers seems to slightly improve the model performance. The same observation
is achieved with the Decision Tree Classifier model. The results corresponding to this baseline are displayed in Figure 47.

Fig. 47: Input Vocabulary impact on the performances of the Decision Tree Classifier model

4) Usage of small batches: As previously described in Section IV.H.Batches computation, the implemented batches method
induced a filtering out process of the batches of size inferior to the batch size. The effect of this filtering out was studied
by preventing it and results are presented in Figure 48. The results illustrate the negative effect of preventing the filtering of
small batches. It makes sense as some batches are made of only 1 program. In this case, the spreading of the gradient is not
optimal and minima are hard to find.

Fig. 48: Effect of the filtering of small batches on the EP model

5) Label Grouping: The same method applied in Section VII.C.7.Multi-classification analysis was used for the EP model.
Results are displayed in Figure 49. Just as a reminder : label of type 1 corresponds to Integer Overflow vulnerability, labels of
type 2 corresponds to External Call To Fixed Address vulnerability, label of type 3 corresponds to Exception State vulnerability
and finally label of type 4 correspond to Multiple Calls in a Single Transaction vulnerability.

Fig. 49: Label Grouping Analysis on the EP model
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It can be observed that the easiest label to predict is type 1 and then type 3. The F1 scores for label 2 and 4 are
near 0. This was expected for type 4 due to its extremely low proportion in the data while for label 2, the difficulty
of classifying it can be explained by the intrinsic nature of this type of vulnerability : it corresponds to an error in
assertion, that is really difficult to infer. Then, when two labels are set together as positive labels, the performance follows
the same relation in terms of scores. As it’s easier to classify classes 1 and 3, the best scores are reached when these
two vulnerabilities are labeled as positive while if one of the other types is grouped with 1 or 3, the scores decrease.
Moreover, the amplitude of the decrease is proportional to the score reach by each category alone. It means that, as the
score of label 1 alone is higher than the one for label 3 alone, the scores for union of label 1 and 2 is higher compared
to labels 2 and 3 grouped together. Also, scores for the union of labels 2 and 4 stays low. The same relations are
observed for classification with 3 labels taken in the positive set. In fact, F1 scores for [1,2,3] and [1,3,4] are nearly the
same and higher than score of [1,2,4] which is higher than the one for [2,3,4]. The main conclusion is that this analysis
has shown the existence of easier labels to predict. Besides, some labels have common information that helps to predict
vulnerabilities because by grouping two labels as positive, the scores achieved exceeds the ones found for each label separately.

E. Grid Search Analysis on Batch Size, Subsampling rate and Path Lenght for Baselines, EP and PL model

In this section, the usual program representation described in Section II.Background and IV.Methods was used. A Grid Search
analysis was performed for 3 hyperparameters : batch size (8, 16 or 32), the path length (16 or 32) and the proportion of
subsampling on the more negative programs (0.8, 0.5, 0). The subsampling at a programs level allowed to obtain faster
simulation in terms of time and also allowed to increase the percentage of positive samples in the dataset as described
previously in Section IV.A.Preprocessing. To be able to understand the results of the grid search, an analysis of the different
inputs induced by the subsampling and the batch methods was conducted. The table on Figure 50, describes the distribution of
the data depending on their labels while the table on Figure 51 displays the quantity of data created due to the combinations
of the parameters batch size and percentage of subsampling. The main conclusion is that the input created with a subsampling
rate of 80% create a dataset with very few positive labels for each category.

Fig. 50: Distribution of the vulnerabilities in the different dataset made using different subsamlping methods

Fig. 51: Distribution of the vulnerabilities in the different dataset made using different subsamlping percentage and batch sizes

Figure 52 displays the results of the grid search over the 3 parameters for the 3 kinds of models. It allows an easier comparison
by grouping together the results for the 3 models with the same simulation settings.

First of all, an analysis only about the EP model is conducted. Results are better when the percentage of positive data in the
set is higher. This makes sense as the dataset is biased and as the number of positive labels is lower for dataset with low
subsampling rate than the ones having a higher subsampling rate.
For both the percentage of subsampling, the size of the batches also impacts a lot the scores. In fact, the higher is the batch
size, the higher F1, precision and recall scores are. This observation can be explained by the usage of a higher batch size
values that induces an higher filtering out of programs which decreases the size of the dataset.
The effect of the path length is less clear. The impact seems to depend on the set up of the experiment. For example, taking
into account the trial with a subsampling percentage of 0.5 and with a batch size of 8, an increase of the path length from
16 to 32 has a bad effect on the metrics while with a batch size of 16 and 32, increasing the path length has a positive
effect. The explanation is that increasing the batch size enforce our model to train on larger programs and thus, in this case,
increasing the path length would make sense as more information could be took into account. Some more simulation needed
to be done to prove this hypothesis.
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Fig. 52: Grid Search Analysis on Batch Size, Subsampling rate and Path Lenght for Baselines, EP and PL model

Then, an analysis only about the PL model is conducted. These results show the same effect of the different tested parameters
as for the EP model. This makes sense as the PL model is a subset of the EP model. Indeed, performances are better when the
percentage of subsampling is higher, which means results are better when the percentage of positive data in the set is higher.
Also, the positive effect of an increase of the batch size is observed. This effect is more visible when the percentage of
subsampling is smaller meaning when our model is run on more data. This makes also sense as changing the batch size
when there is not a lot of data can drastically decrease the amount of programs used in our training and testing phases. This
observation is in accordance with the fact that using higher batch size values induces that several programs are drop away and
are don’t use during training and testing.
The effect of the path length parameter is not understandable. For a subsampling rate of 0.8, the impact is negative for batch
size 8, neither negative neither positive for batch size 16 and positive for batch size 32. To be precise, the simulation using a
batch size of 32 and a path length of 32 is extremely good. However, this observation is due to a huge decrease in the used
number of samples and can also coincide with larger programs as explained previously. It would be interesting to work on a
dataset made of larger programs. Except this good result, the effect of the path length is really hard to describe and seems
to be unpredictable. Consequently, a path length of 16 nodes is set as a default parameter as it decreases the amount of time
and computation power needed for the computation. Remember that before, in Figure 35 path length parameter had a huge
impact. But in the meantime, a bug was found and fixed in the code. By fixing it, the path length parameter lost his importance.

By doing a comparison between the previously described results obtained with both EP and PL models, it’s impossible to
discriminate a better one as also explained in Section V.Results. However, it can be seen that the EP model usually succeeds
to have better recall scores while the PL model seems to succeed to achieve higher precision.

Finally, the implemented baselines were also used in this grid-search. Figure 53 describes the results of the different baselines
using a subsampling rate of 0.8 and a batch size of 8, and a path length of 32. The baseline called ’Raw_baseline’ does
not correspond to a model but corresponds to the most basic baseline that can be created : predictions are only negative
values. Similar simulations were done for each set of settings but the entire set of results are not displayed due to its lack
of interest. However, the best baselines’ scores for each simulation were reported in Figure 52. The best model was always
the Decision Tree Classifier from the Sklearn library. Even if the results of this baseline was surprisingly good, our models
always succeeded to exceed baselines’ performances in term of F1 score and recall.
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F. Usage of Synthetic dataset

As previously described in Section V.RQ1.3, the creation of a synthetic dataset was implemented to be tested as a noiseless
input source on our models. In this section, a description of additional experiments that were run alongside the building of
the project is done. The same process as previously described in Section V.RQ1.3 was used to build the different sources of
synthetic data but the format of the added information and the categories targeted by these transformations were changed to
test different settings. Figure 54 summarizes the results found on the different inputs. The default parameters used for these
simulations were a batch size of 8, a path length of 16, a maximum number of tokens per line of 4 and a subsampling rate
of 0.5. Remember that with this kind of settings, a line corresponds to 4 paths made by 16 nodes.

In these experiments, several types of patterns were used and injected to the path corresponding to the positive labeled lines
or to the negative labeled lines. Here is a description of each type of pattern :

• Random pattern : This kind of pattern corresponds just to a randomization of the entire information in the implied line’s
paths. In this case, all the information contained in the paths is destroyed.

• Raw data pattern : This type of pattern corresponds to the raw data. It means that none transformation has been applied
to the corresponding line’s paths and consequently that the information naturally contained in them is kept.

• Identical pattern : In this case, the two first paths corresponding two one line were set to a list of 1 while the two last
paths were randomized. In this case, strong discriminatory power is injected into the paths. Sometimes the value 1 was
changed to another number but it never changed the observed effect.

• Identical Range pattern : In this case, small randomness is added to the created path. In fact, the paths are changed by
injected a pattern of the same length containing numbers defined inside a specific range and created randomly. To be
precise, for the lines labeled 1, the first path contained only 1, 2 or 3 numbers while the second path contained only 4, 5
or 6 while the third path contained only 7, 8 or 9. The fourth path was randomized. The same is applied to lines labeled
2 : the first path is made of numbers contained between 1 and 10, the second path with numbers between 10 and 20 and
the third path with numbers between 20 and 30. The labeled 3 lines had also the same structure : the first path was made
of numbers between 50 and 54, the second path with numbers between 54 and 58 and finally the third path with numbers
between 58 and 62. The information localised in this kind of paths contained a high discriminative power but lower than
the one of the Identical pattern structure.

• Pattern with noise probability x : This process corresponds to an addition of noise that can be applied to all the previously
described patterns. The x number defines the probability of adding some noise to each path. Then, in the case of noise
creation, a random number is generated between 0 and 4 to choose how many tokens’ paths are changed. Let’s say
that the generated number is 2. It means that the two tokens’ paths are transformed. For each one of them, two lists of
random length made of random numbers are created : one corresponds to the indexes of the node in the path and the
second corresponds to the new values of the corresponding nodes. This process has the consequence to add dissimilarities
into the data.

Fig. 54: Performances of the models using different settings of synthetic data as input

From lines 1 to 4 of the table displayed in Figure 54, a hypothesis can be made : the positive data and negative data are too
similar to allow our model to be able to classify vulnerabilities with high accuracy. To test this hypothesis, the same pattern
for all negative and positive data was set and results can be found in line 5. By doing that, the model is run on identical data.
From the results, it can be deduced that this is not the case and consequently that the data are not exactly the same between
the two classes. The model is not able to learn anything which makes sense as there is no difference between negative
and positive data. Similar results were obtained on our sanity check of line 6 where the entire input data was completely random.

Then, another experiment was tried : one of the categories was randomized while the other kept its raw input. With this
process, it can be tested if the model is able to find patterns contained in the raw information of one class (lines 7 and 8
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in Figure 54). If the model is able to classify vulnerabilities it would means that the information contained in positive and
negative data could be too similar to allow classification. In fact, in both cases, the F1 scores are nearly perfect. Our model is
able to classify vulnerabilities with perfect accuracy without the information contained in one of the two classes. Moreover,
thanks to line 8, it can be concluded that our model is able to well-classified data with only the information contained in the
positive data which represents approximately 3% of the entire dataset. It means that the interaction between the positive and
negative data induces a decrease in the accuracy of the model most probably due to a high similarity. However, a perfect
score is not obtained for line 8 meaning that some samples are hard to classify because they are made with similar data as the
negative ones, which are just noise. It can also be concluded that information contained in the negative set is more important
than the one in the positive set. This fact could be due to the unbalanced property of the dataset.

From the previous experiments, the conclusion that our model is learning on mainly similar data can be drawn. This fact was
indeed proven by Figure 19 of Section V.1.RQ1.2. By knowing this distribution, a reproduction of the EP model behavior was
implemented with the synthetic data. To do that noise was added to the paths. In fact, the guess is that negative and positive
data are approximately similar but not exactly the same. So to simulate the same structure, positive and negative data were
transformed into the same type of identical range pattern and the noise was added only to the negative data (lines 9 and
10 on Figure 54). For the noise probability of 0.5, by analyzing the different values of each epoch, a conclusion about the
similarity between the simulation with the raw data and with the synthetic one is drawn. The only difference is the shape
of the precision curve which is beginning quite high and decreasing during training. To finally succeed to simulate the same
behavior, the design of synthetic data with an even more similar pattern was done and corresponds to line 11 in Figure 54.
By looking at the learning curves, the similar behavior between the raw data and synthetic data made with identical patterns
and with the addition of noise to the negative set is shown. It underlines the main weakness of our project: usage of an input
without enough discriminate power between positive and negative classes.

48 MATH-598 - CSE - EPFL



VII APPENDIX

G. Similarity analysis at path-level

As described in Section V.B.RQ1.2, to understand the changes induced by the addition of operators as tokens, a statistical
investigation about CDPs is done. Remember that a line is formed by several tokens that are linked to their CDPs formed
thanks to the AST representation. Thus, each CDP can be associated with the label of the corresponding line. It means that
one label is displayed by 4 paths, as in our case, the same default conditions as the one described in Section V.B.RQ1.1 have
been used.

In the previous section, the analysis of the aggregations of the 4 paths corresponding to different labels classes were stored
and an investigation of the unique subset of the aggregations forming each class was done. In this section, the same method
is used on the non aggregated paths. Figure 55 summarize our finding for the default dataset while 56 show the results on the
augmented dataset. In these tables, the column called Number of CDP paths indicates the number of paths contained in the
corresponding set. The columns called Number of unique paths represents the number of unique paths in the corresponding
set over the maximum number it could have reach.

Fig. 55: Statistics about the collection of CDPs corresponding to 4 tokens in each line implied in negative and/or positive labels for the
raw dataset considering

Fig. 56: Statistics about the collection of CDPs corresponding to 4 tokens in each line implied in negative and/or positive labels for the
augmented dataset considering operators as tokens

From these two figures, two conclusions can be drawn. First, the overlap between paths implied in a negative and in
a positive label at the same time is huge. It underlines, as before, the high similarity of the two classes’ data and
illustrates the intrinsic lack of discriminative power of the input. The second conclusion is that, at this path-level, without
the aggregation of the 4 paths forming a line, the addition of the information corresponding to the operators token has no effect.
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H. Complete Attention Weights Analysis

The meaningful results of this analysis are shown and explained in Section V.B.RQ1.4. Below, the entire set of generated plots
can be found.

Fig. 57: Distribution of token’s weights implied in each vulnerability type

The plots of the first row of Figure 57 represent the distributions of the tokens for each type of vulnerability according to
their weights. Each one of the graphs composing the first row are a distribution of the tokens implies in one particular label.
It means that from these graphs, a broad idea about which tokens are causing which type of vulnerabilities can be created. In
fact, you can take the top 10 tokens and obtain the 10 tokens that have the biggest influence on which type of vulnerability
will be created. Some causes can thus be differentiated.

The plots of the second, third, fourth, and fifth row represent the distributions of top10 tokens implies in each label (first
and second graphs of each row) and grouped by larger categories (third and fourth graphs of each row). These more general
categories of tokens are used to gain interpretability and a comparison is done with the number of tokens implies in label
No Vulnerability which are represented as orange bins. Thanks to the comparison, it can be concluded that all the tokens are
implied with a higher score in label No Vulnerability. It thus gives us a way to see the tokens that have really huge importance:
the ones that are not so present in No Vulnerability labels set while present in the Top10. The second line corresponds to
label 0, the third line corresponds to label 1, the fourth line corresponds to label 2 and the fifth line correspond to label 3.

The sixth row corresponds to a study made on all positive data. This row is made of 3 graphs representing a condensed version
of the 4 previous rows. In fact, the Top10 of the tokens implied in the entire set of positive labels is shown. The first graph
represents the distribution of these Top10 tokens compared with their respective importance in label No Vulnerability. Using
the same reasoning as before by giving more importance to the ones which are less represented in label No Vulnerability
subset, the user is able to find the more important tokens for positive labeling. The second graph displays a count per token.
This count represents the number of times each token is implied into a vulnerability. It means that the maximum score a
token can have is 3 and it would mean that this token is one of the causes for the 3 different types of vulnerabilities at the
same time. The third graph represents the same information for the more general categories.

The 3 rows of Figure 58 represent the intersection analysis between the more important tokens for different sets. The main idea
is to analyze the tokens implied in two vulnerabilities at the same time. The first row represents the intersection of labels 1 and 2,
the second row represents the intersection of labels 1 and 3 and finally, the third row represents the intersection of labels 2 and 3.

The first graph of each row is made of the tokens that are present in the intersection of the 2 different label sets. Thus a
conclusion about the common causes of these two labels can be drawn. Then, the second graph of each line displays the same
information as the first one but grouped by the more general categories. Finally, the two last graphs of each line represent the
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Fig. 58: Intersection analysis of the more important tokens for each vulnerability type

same information but compared with the importance of each token in the negative labels.

Fig. 59: Word Cloud for vulnerability of type 0 and 1

Fig. 60: Word Cloud for vulnerability of type 2 and 3

The main idea of the representation Figures 59 and 60 is that the more important the token is for the corresponding set, the
bigger it is written. The first illustration of Figure 59 corresponds to label No Vulnerability, the second to label of type 1. The
first illustration of Figure 60 corresponds to label of type 2 and finally the second to label of type 3.
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