
Understanding the Doer Effect for Computational
Subjects with MOOCs

by

Jitesh Maiyuran
B.S., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 25, 2018
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Una-May O’Reilly
Principal Research Scientist

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erik Hemberg
Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chairman, Master of Engineering Thesis Committee



2



Understanding the Doer Effect for Computational Subjects

with MOOCs

by

Jitesh Maiyuran

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we examined the relationship between the doer effect and learning
computational subjects. Computational thinking is becoming increasingly important
for students and professionals, and teaching this thought process is a relatively new
practice. The doer effect is a well-studied learning phenomenon, yet its impact in
computational subjects is not well-understood. Also, given that MOOCs cater to a
variety of students, predicting student experience levels can benefit instructors. To
address these problems, we used data from massive open online courses (MOOCs)
to understand how different student activities are correlated with positive learning
outcomes. We also considered the doer effect in a variety of scenarios such as prior
experience, duration, and course content. Using a variety of linear models and feature
engineering methods in the MOOC setting, we were able to replicate the results seen
in literature and draw conclusions about the doer effect in new contexts. Because
we found prior experience to correlate with student behavior, we also developed a
classifier to predict student experience levels given demographic and behavioral data;
our model gives strong accuracy and is robust for use in small data sets.
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Chapter 1

Introduction

Massive Online Open Courses (MOOCs) have gained a large audience in recent

years [2, 6]. With greater access to the Internet for users as well as content providers,

online courses cover many knowledge domains and cater to large populations. While

MOOCs offer many different learning resources such as videos, readings, and prac-

tice exercises, understanding exactly how students best learn new material is still

unknown. Prior research has shown strong results for the presence of a "doer effect"

– the idea that "doing" (i.e. completing practice problems and exercises) contributes

significantly to a learner’s understanding of the material beyond just watching videos

or reading articles [13]. In particular, the literature suggests that learning by doing

is more highly correlated with success on assessments of the same material compared

to reading or watching videos.

When studying the doer effect in MOOCs, however, there are many nuances to

consider given the more open and technology-driven nature of the educational setting.

Traditionally, videos have been the primary offering of MOOCs due to the ease of

establishing videos online. Lecture notes and accompanying readings are also com-

mon due to the ease of incorporation. In contrast, offering online exercises that many

online learners can complete is much more challenging for course providers. Effective

platforms for such exercises often offer additional features such as hints to guide stu-

dents as well as problem solutions, e.g. personified programming feedback improves

novice programmers’ learning and can be used to predict abandonment [14, 22]. Cre-
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ating this environment is doubly difficult for computational courses because test cases

must be written to evaluate the correctness of solution, which is time-consuming for

any instructor. Because of these additional needs, learning by doing is less commonly

available to students online. Thus, understanding whether and how learning by doing

compares to traditional methods can help us decompose the learning process in order

to better tailor general purpose educational materials to the needs of students.

1.1 The Doer Effect

We take a special interest in the doer effect because of the canonical belief that

learning to program requires learners to actually program as opposed to simply read

about programming. Because of this belief, we also seek to make clear the definition

of doing : Doing is the completion of exercises that requires the student to answer a

question outside the context of an assessment. It is also important to distinguish this

from active learning, which may just be classified as learners rereading written mate-

rials or rewatching videos, which can imply a higher comprehension of the presented

material.

1.2 MOOCs and Learning Context

Here we focus on courses that teach ‘computational thinking’, a term in education to

describe a range of curriculum from math to programming to algorithm design. We

use the definition developed by Wing 2010 which considers computational thinking

to be ‘the mental activity in formulating a problem to admit a computational solu-

tion. The solution can be carried out by a human or machine, or more generally,

by combinations of humans and machines’ [1]. This definition has motivated other

computational thinking learning initiatives as well, making it a proper definition to

consider in the MOOC setting as well [21].

Massive Open Online Courses (MOOCs) are the second characteristic of our set-

ting, and have their own idiosyncrasies when compared to a traditional classroom

20



6.001x 6.002x
Assignment Due Date Assignment Due Date

Python Basics Week 4 Optimization Week 5
Simple Programs Week 5 Randomness Week 6
Midterm Exam Week 5 Midterm Exam Week 7
Structured Types Week 7 Statistics Week 8
Good Programming Practices Week 8 Modeling and Fit Week 9
Object Oriented Programming Week 9 Final Exam Week 10
Algorithmic Complexity Week 9
Final Exam Week 10

Table 1.1: 6.00.1x and 6.00.2x graded activities over a ten-week course

Course # Videos # Finger Exercises

6.00.1x 81 555
6.00.2x 43 177

Table 1.2: The size of the courses in terms of available material, with 6.00.1x having
many more videos and finger exercises available to students.

setting. MOOCs often have low completion rates (9-10%), and the lack of certifica-

tion can deter many students who enroll for professional development. Some MOOCs

allow students access to materials and encourage them to learn at their own pace

while others enforce a schedule. Other qualities like proctoring, prior experience, and

automatic grading can also change the MOOC experience [16]. In this study, we will

be considering the edX MOOC platform, where many of these qualities will become

relevant.

In order to study the presence of the doer effect in computational learning, we

examine the behavior of students in two courses: 6.00.1x, Introduction to Computer

Science and Programming Using Python, and 6.00.2x, Introduction to Computational

Thinking and Data Science. 6.00.2x covers more advanced concept and is intended to

be taken after 6.00.1x. Courses are divided into multiple units, where each unit has an

associated problem set, for which students receive grades; a list of assessed material

is shown in Table 1.1. We additionally note that the courses differ in the number of

materials available to students, seen in Table 1.2. Although edX offers courses that

21



Figure 1-1: The edX platform offers students a variety of methods to learn material,
Here, we have both a video (left) and two types of optional "finger exercises" that
students complete immediately after watching the video. Finger exercises can be
coding questions (center) or simpler multiple choice questions (right).

can be taken at leisure, the courses we examine abide by a schedule; each course is

ten weeks long, with problem sets due almost every week after the first few weeks.

In order to learn the content for each unit, students are expected to watch lecture

videos narrated by instructors and complete "finger exercises" - optional problems

interspersed in lecture videos that teach the content discussed in the video. Figure

1-1 shows an example of a finger exercise where students are expected to implement

the topics explained in a video. In addition to completing problem sets for grades,

students are also assessed via two exams: a midterm and final.

Finger exercises are of special interest to us because they indicate optional "do-

ing" – students completing practice activities on their own accord in order to better

understand the material. Furthermore, when completing finger exercises, students

can have two options; they can either check their solutions ("problem check") or they

can just reveal the solution ("show answer"). A summary of the different affordances

offered by edX is shown in Table 1.3. Analyzing how students’ interactions with finger

exercises relate to their problem set and final exam grades allow us to better under-

stand the doer effect in this setting. We believe that usage of these two functions

when completing finger exercises serve as a sufficient proxy for doing.

The edX platform allows students to elect to receive a certificate of completion

for completing the course with a passing grade. These are the learners for whom we

analyzed data because they would have a proper incentive to learn the material.
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Interaction Description

video Videos vary in length, and cover topics throughout the course. Stu-
dents can watch any of the videos at any time as well as drag a slider
to select a certain part of the video.

problem check After entering a solution, all problems (both finger exercises and
problem sets) allow students to check their solutions. Students can
continue checking solutions regardless of the outcome.

show answer Students can choose to reveal the solution to problems included in
the finger exercises.

Table 1.3: The three main facets of the edX courses that we will consider are videos,
‘problem check’ (checking an entered solution) and ‘show answer’ (revealing a solu-
tion).

1.3 Student Prior Experience

One aspect of the doer effect that remains unstudied is the effect of prior experience.

In particular, do we expect students with equal experience with the subject matter

to have grades that are similarly correlated with doing? Studies report different

impacts on learning outcomes for introductory computer science courses in traditional

classrooms [20, 18]. In order to study the effect of prior experience, we will employ a

survey conducted in 6.00.1x and 6.00.2x that asks students to report their familiarity

with programming in general. Note that of the many thousands of students who

register for the course, a relatively small fraction answer the survey, but because

we select only the students who paid to receive certification, many of the students

who chose to receive a certificate also answered the survey. This is unsurprising

considering that online courses and MOOCs often have low retention rates [10, 15].

The number of students for each survey response is shown in Table 1.3 and Figure

1-2. In 6.00.1x we see that students with no experience are represented as well as

students who know a different language when considering the students who enrolled.

However, when looking at the students who completed the course, students who knew

a different language to begin with outnumber students who had no experience 2 to 1.

This disparity gives us a preliminary indication that prior knowledge plays a major

role in student success in this course.
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Figure 1-2: Visualizing the proportions of certified survey respondents allows us to
better understand the nature of the courses. We see that in 6.00.1x, most students
who received a certificate have some programming experience, and in 6.00.2x, most
have taken 6.00.2x with almost no students starting with no experience.

Response Enrolled Certified

Absolutely none 27,108 853
Different language 27,157 1,569
Know Python 7,934 578
Veteran 1,202 75
No Response 182,552 410

Total 245,953 3,485

Response Enrolled Certified

No coding experience 595 2
Took 6.00.1x 3,532 423
Knows Python 1,880 66
No Response 36,666 361

Total 42,673 852

Table 1.4: The prior survey responses for 6.00.1x (left) and 6.00.2x (right) highlight
the makeup of experience levels of students who enroll in the course. In both courses,
we see that inexperienced students enroll in the course, yet relatively few of them
complete the course to receive certification. We also see a high dropout rate, typical
in MOOCs [16].
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1.4 Research Questions and Contributions

Understanding the role of the doer effect in learning computational subjects is mul-

tifaceted, as is our approach. We thus present the following research questions.

We first want to know whether the doer effect exists when learning computational

subjects. We then consider altered scenarios: Is the doer effect as prominent for

students of different experience levels? Is the doer effect similar for more advanced

subjects? Does the doer effect vary for short-term vs long-term learning? Does the

doer effect vary for different computational subjects?

To address these questions, we replicated the methods seen in literature [13] and

also ran similar experiments with data from different cohorts of students by scraping

prior experience levels from the edX platform. Our findings in computational subjects

are similar to those presented in the literature. Because MOOCs often offer more

information about how a student behaves on the platform, we also implemented a

different feature-engineering method that takes advantage of more granular MOOC

data, obtaining results that both support and dispute some findings in the literature.

Because we found a strong relationship between doing and student experience,

we believe that identifying students with high levels of experience (‘veterans’) can

be valuable for statistical analysis as well as for instructors; this led us to one final

question: Can we predict how much experience a student has prior to taking the

course? We developed a partial-pooling hierarchical model that determines whether

a student is a veteran based on demographic and biographical information.

Having addressed these research questions, it is important that we also integrate

the methods into the MOOC-Learner Project (MLP). MLP develops insights from

large sets of MOOC data; by integrating our methods to examine the doer effect,

instructional designers and learning scientists can extract similar insights from their

courses to understand the extent of the doer effect across many domains.
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1.5 Overview

In Chapter 2, we will begin by parsing the data to better understand how students

behave and interact with the materials available in the course. Having an intuition

for the data, we begin to address our research questions. First, in Chapter 3, we

adopt the method of previous works, independent of the details of our course and

platform [13]. Then, in Chapter 4 we will refine our method to take advantage of the

more granular data for each student to highlight the doer effect. Because MOOCs

are inherently technology-driven, we can leverage this aspect to develop models more

attuned to the MOOC environment, as suggested by prior work [5]. We will see that

prior experience can differentiate the extent to which the doer effect is related to

student learning. To further address this, in Chapter 5, we will explore methods to

classify students by prior experience level in a MOOC setting. Finally, in Chapter 6,

we summarize our findings and delineate future directions for our work.
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Chapter 2

Exploratory Analysis

Before addressing our research questions, it is informative to probe aspects of our

data that provide an intuition for the nature of the courses and student behaviors. In

particular, we wish to understand how students interact with the two major learning

affordances: videos and finger exercises. In this case, we will be limiting our analysis

to students who received a certificate of completion in the course.

2.1 Videos

Videos are one of the most common learning methods, often consisting of recorded

lectures that cover course material. On the edX platform, videos and relevant fin-

ger exercises are interleaved, allowing students to alternate between an instructor

explaining a concept and the student being given an opportunity to exercise that

knowledge.

2.1.1 Videos and Grades

To understand the role that videos play in student learning, we can first look at how

video-watching is related to student grades, shown in Figure 2-1. When looking at

the number of unique videos viewed, we see that some students are not viewing many

videos, yet still doing well in the course (upper left region). Meanwhile, most students
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Figure 2-1: We can observe how videos are related to student performance from two
different perspectives: the number of videos watched (left) and the number of actions
(pause, play, seek, etc) taken throughout the 6.00.1x course. For each student who
received certification in the course, we plotted both of these statistics against the
student’s final grade.

lie in the upper right region, watching all or most videos and still doing well. We see

a similar pattern when looking at the number of video events: Most students interact

with the videos less than 1000 times, with a few students interacting with the videos

much more frequently. Both of these images indicate that video-watching is a major

mode of learning offered by MOOCs for learning content.

2.1.2 Videos Over Time

Knowing that videos play a large role in student learning, we can also consider how

video-watching is related to students completing individual problem sets. Because

instructors often provide the intuition in videos, and this intuition is later evaluated on

problem sets, we would expect students to watch videos frequently when completing

problem sets. To understand this relationship, we can examine how much video-

watching occurs in relation to the calendar of the course – namely, due dates of

problem sets and exams, shown in Figure 2-2. We initially see that video activity

spikes on days when problem sets are made available to students and when problem

sets are due, with the intervening days seeing fewer activity. This tells us that not

only do videos seem to correlate with higher final grades, but they are also heavily

used when completing problem sets in the short term.
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Figure 2-2: To understand how students use videos to learn material, we can observe
how many times students interact with video content i.e. play, pause and seek specific
times in videos on each day of a course. Problem set start and due dates are shown
in dotted lines. Some dates overlap i.e. the fifth and sixth problem sets were both
due on 10/27.
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2.2 Finger Exercises

The finger exercises described in Chapter 1 are the second essential mode of learn-

ing offered to edX students. For each topic/unit, finger exercises offer students an

opportunity to implement the idea being discussed. When students struggle, they

can elect to reveal the solution or check their solution. We consider finger exercises a

proxy for ‘doing’, and we thus use the number of times a student elects to reveal or

check solutions to finger exercises as a measurement of ‘doing’. However, we also must

understand the differences between these two actions; checking a problem repeatedly

is very different from revealing the solution. To understand these differences, we look

at the joint distribution over these two actions in Figure 2-3. We see that the number

of ‘problem check’ is significantly greater than the number of ‘show answer’ for most

students, which matches our expectation that students would use the problem-check

option multiple times while attempting to solve a problem. This confirms our in-

tuition that while both of these actions are involved with doing they can have very

different meanings for a student’s learning process.

In addition to examining the doer effect in general, we also wish to examine certain

fundamental ideas in computational learning and determine whether the doer effect

exists to the same degree in each of these topics or how it differs. Understanding this

relationship begins with considering how different finger exercises relate to chapter

grades i.e. on which finger exercises is success most correlated with high performance.

To explore this idea, we plotted the number of attempts taken on finger exercises

against performance on the chapter, shown in Figure 2-4. We see that the relationship

between working on an exercise and doing well on the corresponding problem set

varies. Considering the basics of Python, we see that students take fewer attempts

to get the same grades as they did during Week 6 when learning complexity, a more

conceptually advanced topic. This indicates that learning a particular concept is

highly dependent on the specific type of practice. By isolating these specific types of

practice, we can perhaps get more insight into how students learn these concepts.
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Figure 2-3: Both revealing solutions and checking solutions are indicators of ‘doing’,
but these actions represent slightly different intentions. On the y-axis, ‘pc’ shows the
number of times a student checks a problem and on the x-axis, ‘sa’ shows the number
of times a student revealed the solutions, with marginal distributions as well.
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Figure 2-4: Plotting chapter grades against the number of attempts a finger exercise
for all certified students for two chapters, we see different distributions for chapters.
Here, each color denotes a specific finger exercise in the unit. We see that the basic
programming constructs in Week 1 require fewer attempts in general, while more
conceptually advanced topics such as complexity, require more attempts in general.
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Chapter 3

Identifying the Doer Effect Using

Existing Methods

Having a better understanding of how students behave in a MOOC setting, we can

now consider how the doer effect relates to student performance. Using the two

major modes of learning offered on the edX platform discussed in Chapter 2, videos

and finger exercises, we can quantify student behavior and identify the correlation

between doing and student performance.

3.1 Method

Using the data discussed in Chapter 1, we will use methods founded on doer effect

literature to study how the doer effect manifests in computational learning. [13]. Be-

cause students have access to a variety of resources on the edX platform, we consider

two main modes of learning: watching videos and completing finger exercises.

When culling actions for a specific unit and student, we consider all actions taken

by the student from the beginning of the course until the due date of the unit’s problem

set. We then quantify these two actions as follows: Each unit in the course has an

associated set of video lectures for students. We consider a video ‘watched’ if the

student started watching the video. Similarly, for each unit, there is an associated

set of finger exercises. We consider a finger exercise ‘done’ if the student either
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Name Description Analog [13]

prereq-unit A video or finger exercise that is associated with
a unit that precedes (i.e. is a prerequsite for) the
content being assessed in this problem set.

before

withinreq-unit A video or finger exercise that is associated with
the same content begin assessed in this problem
set.

within

postreq-unit A video or finger exercise that is associated with
a unit after (i.e. is a postrequsite for) the content
being assessed in this problem set.

after

Table 3.1: All actions taken preceding the unit due date are culled and binned ac-
cording to these definitions, analogous to the definitions in prior works.

revealed the solution to the exercise or checked their own solution to the problem.

We then take both the video and finger exercises completed in this time span and

group them by the unit for which they are completed; all of these watched videos and

attempted exercises fall into one of three bins: covering material from a prerequisite

unit (‘prereq-unit’), covering requisite material from the current unit (‘withinreq-

unit’), and covering material from a future unit (‘postreq-unit’) i.e. a postrequisite.

Note that in our analysis we refer to ‘prereq-unit’ and ‘postreq-unit’ as ‘outside-unit’

to generalize material that is not associated with the unit being assessed. These

definitions are analagous to those in Koedinger 2016 as illustrated in Table 3.1 This

method constructs six features for each student-unit: three time-scales for videos and

three time scales for finger exercises. Note that in this scenario, redoing a finger

exercise or rewatching a video is not captured; the value of each unstandardized

feature is limited by the number of finger exercises and videos available either for

the current unit, for all future units, or for all previous units. We then standardize

these values for each unit and use a linear regression model with fixed effects for the

six features and random effects for the unit and the student to account for varying

difficulties of units and varying student ability.

We also consider an important diagnostic for this method: to give meaningful

results, each student must vary their within-unit activity and outside-unit activity
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(where ‘outside-unit’ is simply the sum of ‘prereq-unit’ and ‘postreq-unit’). If every

student-unit had the same amount of within-unit and outside-unit activity, we would

not be able to identify differences in doing relevant content (‘within-unit’) vs less

relevant content (‘outside-unit’).

3.2 Experiments and Results

We first consider the presence of variation in student behavior. In particular,we will

use the same methods in previous works: considering which quintile a user falls into for

both his within-unit and outside-unit activity, shown in Figures 3-1 and 3-2. Looking

broadly at the heatmaps for prior experience groups in both 6.00.1x and 6.00.2x,

we see a concentration of students along the diagonal where within-unit quintile is

equal to outside-unit quintile. This pattern is expected because it indicates that

most student-units fall into the same within-unit quintile and outside-unit quintile.

However, we also see a great deal of variation, where many student-units are off

the diagonal as well, indicating that the within-unit and outside-unit features are

still very informative. Because the heatmaps display a great deal of variation over

student behvaior with respect to within-unit and outside-unit activity, we can move

forward with the mixed-effects regression.

3.2.1 The Doer Effect in Computational MOOCs

We begin our analysis considering all students in 6.00.1x, where finger exercises and

video activity on different time scales are fixed effects and the student and unit are

random effects, giving the following regression formula in R:

lmer(unit_grade.Z ∼ num_prereq_fex.Z + num_postreq_fex.Z +

num_withinreq_fex.Z + num_prereq_vid.Z + num_postreq_vid.Z +

num_withinreq_vid.Z + (1|unit) + (1|username), data=edx_data).

The results of this analysis are shown in Table 3.2.2, where we examine the coeffi-

cients in the first two columns. We see that completing the requisite finger exercises

for a unit (0.37) is almost three times as correlated with problem set grades as watch-
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Figure 3-1: 6.00.1x variation heatmaps where the within-unit quintile is shown on
the y-axis and the outside-unit quintile is shown on the x-axis, with the number of
students at the intersection shown in each square. In general, we see a concentration of
students along the diagonal, indicating that most students fall into the same quintile
for both their within-unit and outside-unit activity, though there is enough variation
to justify our method.

Figure 3-2: 6.00.2x variation heatmaps, similar to Figure 3-1. The variation lies
less along the diagonal we see in 6.00.1x, perhaps due to the more advanced course
drawing a wider range of students who are capable of going forward or need to review
prior concepts more frequently. Only two students had no coding background, causing
highly discrete values for that group.
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ing the requisite videos (0.13). Additionally, when looking at students who completed

prerequisite materials, completing finger exercises (0.11) was more highly correlated

with success than watching the prerequisite videos (0.02). We consider the correlation

between doing and assessment scores a sufficient basis for further analysis.

3.2.2 The Doer Effect by Prior Experience

We now wish to know how the doer effect manifests for students of different experience

levels. In order to conduct this regression analysis, we use a similar mixed effects

model as we did for all students, this time replacing each independent variable with

six variables, one for each of the survey responses. Note that each student will have

non-zero values only for the six coefficients corresponding to his/her survey response.

The results of this regression are also shown in Table 3.2.2. In this case, we see some

actions remain similarly correlated over different prior experience groups while others

vary from group to group. For students with the least experience, who answered ‘No

Experience’, videos and finger exercises have similar coefficients. For students with

a moderate amount of experience, i.e. those who know another language and those

who know Python, it seems that finger exercises were a relatively better indicator

than videos of success. Finally, for those who identified as veterans, we see a similar

pattern as those in students with no experience where videos and finger exercises are

similarly correlated.

It may be possible that doing is strong indicator of success in only in students with

a moderate amount of experience, whereas watching videos is comparatively more

helpful at the extremes of the prior knowledge spectrum. A possible explanation for

this behavior is that veterans draw on their own knowledge to guide their behavior,

while those with no experience rely on the instructor’s curriculum to guide their

behavior. Both of these trajectories are similar, causing both veterans and novices to

behave similarly to learn the material.
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All Know Python No Experience No Response Other Language Veteran
features coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

prereq vid 0.02 0.04 0.09 0.00 -0.04 0.03 0.04 0.05 - - - -
postreq vid -0.05 0.00 -0.05 0.02 -0.04 0.05 - - -0.06 0.00 - -
withinreq vid 0.13 0.00 0.05 0.00 0.18 0.00 0.11 0.00 0.14 0.00 0.18 0.00
prereq fex 0.11 0.00 - - 0.19 0.00 0.13 0.00 0.09 0.00 0.18 0.00
postreq fex 0.04 0.00 - - - - - - 0.04 0.00 - -
withinreq fex 0.37 0.00 0.45 0.00 0.28 0.00 0.39 0.00 0.37 0.00 0.27 0.00

Table 3.2: Regression coefficients and p-values where problem set performance is a
function of watching videos and completing problems over different time scales. We
have two models here: one for all students (‘All’ on the far left), and another where
students are differentiated by their prior experience level. We only show coefficients
significant at the p=0.05 level.

All Took 6.00.1x Know Python No Response No Experience
features coef p-value coef p-value coef p-value coef p-value coef p-value

prereq vid - - - - - - - - - -
postreq vid - - -0.06 0.05 - - - - - -
withinreq vid 0.03 0.05 - - - - - - - -
prereq fex - - 0.09 0.00 - - -0.07 0.01 - -
postreq fex - - - - - - - - - -
withinreq fex 0.48 0.00 0.46 0.00 0.63 0.00 0.49 0.00 - -

Table 3.3: Regression coefficients and p-values obtained using the same method for
6.00.2x. Our findings from the 6.00.2x data are much noisier, yet we still see the
within-unit finger exercises being the strongest indicator of success.

3.2.3 The Doer Effect in Advanced Courses

With the doer effect very clearly related to student learning, we now wish to see

how this varies over the advanced nature of a course. Specifically, we will consider

6.00.2x, as described in Chapter 1; this course is expected to be a natural progression

of 6.00.1x and thus covers more advanced content. For this course, we use a similar

mixed effects model as we did for 6.00.1x, with the results shown in Table 3.3.

We see that aside from the the within-unit finger exercises being most highly corre-

lated with success among most groups, many of the other parameters are surprisingly

noisy especially when compared with 6.00.1x. results. We believe there may be three

reasons for this result. First, the number of enrolled students and problem sets are

both higher in the introductory course; with its six problem sets and broader audi-
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All No Experience Other Language Know Python Veteran No Response
features coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

vid 0.10 0.00 0.14 0.00 0.10 0.00 0.12 0.00 - - 0.08 0.05
fex 0.35 0.00 0.35 0.00 0.42 0.00 0.32 0.00 0.37 0.00 0.25 0.00

Table 3.4: In the long term, we also see that finger exercises are more correlated with
problem set success with the effect being three times that of videos.

ence, 6.00.1x contains 20,039 student-unit combinations while 6.00.2x only contains

3,312 due to fewer units (four) and fewer students. This difference could affect the

stability of our regression. Second, we posit that the more advanced course material

in 6.00.2x could lead to higher differentiation in the abilities of the survey respon-

dents i.e. those who took 6.00.1x are at a different experience level than those who

answered that they know Python. This may explain the stronger coefficients we see

overall while muddling the results for all students. Third, we note that the magnitude

of available material is quite different between the two as well. Whereas 6.00.1x has

555 finger exercises and 81 videos, 6.00.2x has 177 finger exercises and 43 videos.

Though this difference may not seem large, it decreases the amount of differentiation

among students when considering with-unit and outside-unit activity.

3.2.4 The Doer Effect in the Long Term

The models we have used thus far use problem sets as a proxy for learning; problem

sets are completed at a student’s own pace while the student also has access to finger

exercises and videos. We consider this to be ‘short-term’ learning because students

are assessed on material immediately after learning. We now wish to consider ‘long-

term’ learning as well, where we consider final exam grades to be a proxy of this

performance. In this case, we use a slightly different regression where we no longer

need random effects because each student takes the final exam once, and there is

only one type of exam, giving the following regression formula: final_grade.Z ∼

num_fex.Z + num_vid.Z. The results of this experiment are shown in Table 3.4.

Again we see that the doer effect is prominent, this time when considering how

students perform on an assessment weeks after their the content is learned. In fact,
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we see that doing is three times a stronger predictor of success than watching videos;

we also see that this trend exists across all groups except veterans where watching

videos is not a significant predictor.

3.3 Discussion

In order to evaluate the doer effect in a computational setting, we sought to mimic

existing methods in order to provide as true a comparison as possible [13]. In general,

we find that our results are in line with existing literature on non-computational

subjects i.e. that the relative amount of doing is a stronger predictor of assessment

success than watching videos. In fact, we saw this trend exist to some degree in the

general computational learning case, for different experience levels, for more advanced

courses, and for longer term learning. We do, however, note that in some cases,

such as the 6.00.2x results shown in Table 3.3 and in the prior experience study in

Table 3.2.2, the results are less conclusive; in the contexts of advanced study and

prior experience, we believe more research must be done to have a conclusive result.

Nonetheless, studying student behavior in the MOOC setting is unique because we

have greater insight into how students behave than we would in a traditional classroom

setting i.e. how exactly they interacted with videos and problems on a click-by-click

basis. If one assumes that these actions are a better method of capturing ‘doing’, we

can use this additional granularity to give greater insights into how the doer effect

exists specifically in a computational MOOC setting.
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Chapter 4

Integrating Enriched Features

Identifying ‘doing’ in a MOOC setting is challenging due to the varying definitions

of doing practice problems. Because MOOCs collect more granular data regarding

student behavior, we can be more specific about how we wish to quantify doing. In

this chapter, we will model student behavior using specific actions that users can

take on a MOOC platform to better understand doing and how it is correlated with

learning. Instead of considering each problem and video as a task to be completed,

we instead consider the problem solutions as either being checked or revealed and

videos as a continuous value with a number of minutes being watched. In the finger

exercises space, we believe that considering both of these actions will better capture

the doer effect. In the video space, we believe that total minutes watched, including

rewatching will similarly be a better measure of traditional learning modes. We seek

to clarify the relationship between problem set and exam performance and the doer

effect using these enriched features.

4.1 Method

In order to understand how the doer effect manifests in these courses, we’ve taken a

similar approach to Koedinger et al [13, 12] with some modification, though we still

use a linear regression model where we predict either problem set scores or final scores

as a function of student activity.
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4.1.1 Feature Engineering

We consider three features in our model of student behavior: minutes of video watched

(video), number of times a problem was checked (check), and number of times a

student can reveal a solution (reveal); these are the same features we present in Table

1.3. Because we want to relate assessment grades to activity within the same unit, we

bin student activity into ‘before-unit’, ‘within-unit’, and ‘after-unit’. For example, if

a student watches a video corresponding to the Structured Types unit and another

video on Object-Oriented Programming, and these videos were watched in week 9,

in the week preceding the Object-Oriented Programming problem set, the first video

would be considered "after-unit" and the second would be ‘within-unit’. Note that

this is a similar differentiation over time that the literature utilizes. After computing

these values for all user-unit combinations, we then normalize the results on a per-

unit basis to control for differences in the number of available activities for different

units. Thus, for each of the features, ‘video’, ‘show answer’, and ‘problem check’, we

have three time buckets: before, during, and after. We also normalize problem set

grades per unit. Figure 4-1 visualizes this technique.

This approach differs from the previous method in two major ways.

First, we are considering actions done only in the week preceding the due date

of a problem set as opposed to all actions since the beginning of the course. As

shown in Figure 2-2, video watching among student spiked on problem set due dates,

indicating that the week preceding the due date is most relevant for learning material.

We additionally considered only including actions taken from the time a problem set

was released to its due date, however we found that due to the overlapping time-frames

over which assignments could be due, this was less informative.

Second, instead of counting the number of problems attempted, we consider the

number of actions (‘problem check’ or ‘show answer’) taken. Previously, the maximum

value for a ‘within-req-fex’ was the number of finger exercises available in the unit.

Each finger exercises was either attempted in some regard or not at all. In this new

regime, the number of problem checks is theoretically uncapped and we isolate the
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Figure 4-1: When looking at a calendar of the course’s due dates and when a student
takes certain actions, we can compute the corresponding features. The first row of the
figure enumerates the days, while the second and third rows show the timespans for
two problem sets with the first due on the 12th day and the second problem set due
on the 19th day. Each of the eight boxes in fourth row then indicates a certain action
taken by the student, with the corresponding unit noted in the box. For example, the
first box on the left indicates a finger exercise or video for unit 1. Because the first
two actions do not fall in the seven days prior to a due date, they are not counted.
Of the three actions completed during the critical time for PS1, two are relevant to
PS1, giving the ‘within’ designation, while the other is for PS2, giving the ‘before’
designation because the actions occurs before the unit has been covered. A similar
classification occurs for the actions taken in days 13-19 before the PS2 due date.

effects of revealing a solution versus checking the problem. This is useful because in

computational subjects, checking a problem can be helpful if one dutifully interprets

the error message. Furthermore, our exploratory analysis in Figure 2-3 supports the

idea that there exists variation in how students reveal solutions vs check solutions.

4.1.2 Regression

Whereas in the previous section, we used a mixed effects regression with random

effects for the user and the unit of the problem set, we use only fixed effects here

because we found that the mixed effects models had prohibitively high condition

numbers, implying numerical instability in our resulting coefficients. Additionally,

when considering the groups of students based on survey response, we opt to run a

separate regression for each group instead of creating an effect for each variable in

each group. The resulting formula would be used in R as follows:

lm(unit_grade.Z ∼ video_within_unit + video_before_unit

+ video_after_unit + show_answer_within_unit + show_answer_before_unit +
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show_answer_after_unit + problem_before + problem_within + problem_after,

data=edx_data).

Note that for all experiments conducted in this chapter, we used the Python

statsmodels framework.1

4.2 Experiments and Results

We can evaluate our results by observing the significant regression coefficients pro-

duced by our analysis. Because our covariates are the z-scores of each type of student

action, we interpret a positive coefficient as the grade being positively correlated with

how much of a certain action a student takes relative to his/her peers. The magni-

tude of the coefficient then indicates how many standard deviations away from the

mean assessment score we expect students to perform for each additional standard

deviation from the mean of their actions.

4.2.1 The Doer Effect in Computational MOOCs

We begin by considering the the doer effect for all students in the first computational

course, 6.00.1x, shown in Table 4.1. The leftmost columns indicates the coefficient

values and significance for each action. Initially, we see that all the ‘within’ coefficients

are of similar magnitudes, indicating that watching videos is as correlated with success

as both checking and revealing solutions. We also see that watching videos after a

unit has finished and checking problems for a unit after the unit has finished are

both negatively correlated with success (check after (-0.05) and video after (-0.06)).

Just as certain actions taking place after the due date is negatively correlated with

success, watching videos ahead of time (‘video before’) is the most highly correlated

action (0.22), indicating that students who start learning material more than a week

in advance tend to perform well.

1https://www.statsmodels.org
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All Know Python No Experience No Response Other Language Veteran
features coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

video within 0.08 0.00 - - 0.06 0.00 - - 0.05 0.00 0.16 0.03
video before 0.22 0.00 0.19 0.00 0.26 0.00 0.21 0.00 0.21 0.00 0.21 0.00
video after -0.06 0.00 -0.06 0.03 -0.10 0.00 - - -0.04 0.02 -0.50 0.00
reveal within 0.09 0.00 0.07 0.00 0.11 0.00 0.07 0.02 0.07 0.00 - -
reveal before 0.02 0.04 - - - - - - - - - -
reveal after - - - - -0.05 0.02 - - - - -0.25 0.00
check before 0.02 0.02 - - - - 0.09 0.02 0.04 0.03 - -
check within 0.06 0.00 0.13 0.00 0.13 0.00 0.19 0.00 0.14 0.00 - -
check after -0.05 0.00 - - - - - - -0.06 0.00 0.45 0.00

Table 4.1: This regression models problem set grades as a function of student activity
for 6.00.1x problem sets. Each row is a different affordance/time-frame for which
a user can complete activities for a unit. The columns indicate different subsets of
students based on their prior experience indicated in Table 1.3, with the first column
describing all students. An activity is considered relevant if it is completed in the
seven days preceding the problem set due date. Only coefficients significant at the
p=0.05 level are included.

Know Python No Experience No Response Other Language Veteran

video within - 0.75 - 0.63 2.0
reveal within 0.77 1.22 0.77 0.77 -
check within 2.17 2.17 3.17 2.33 -

Table 4.2: We measure the strength of certain actions for certain groups of prior
experience groups by expressing 𝑅𝑓

𝑠 = 𝛽𝑓
𝑠

𝛽𝑓
𝑎𝑙𝑙

for each prior experience group and for
each of the within-unit actions. Higher ratios indicate that this action is more highly
corrrelated with success compared to the general student cohort. We only list co-
efficients where they are statistically significant. Note that watching videos is far
stronger for veterans compared to the general population and checking solutions is
not even relevant for veterans but strong for all other groups.
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All Know Python No Experience No Response Other Language Veteran
features coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

video within 0.08 0.00 - - 0.01 0.00 0.01 0.04 - - - -
video before 0.22 0.00 0.02 0.00 0.04 0.00 0.04 0.00 0.03 0.00 - -
video after -0.06 0.00 - - -0.01 0.00 -0.02 0.00 -0.01 0.01 -0.04 0.00
problem check within 0.09 0.00 0.03 0.00 0.02 0.00 0.04 0.00 0.03 0.00 - -
problem check before 0.02 0.04 - - -0.01 0.00 - - -0.01 0.04 - -
problem check after 0.00 0.00 - - - - - - -0.01 0.03 - -
show answer within 0.02 0.02 0.01 0.00 0.01 0.00 - - 0.01 0.00 - -
show answer before 0.06 0.00 - - - - - - - - - -
show answer after -0.05 0.00 - - - - - - - - - -

Table 4.3: To offer an alternate method of comparing the strength of doing among
the student groups, we used a linear model similar to that in Chapter 3; we have 45
coefficients, nine for the features across the five survey groups. We also include mixed
effects for unit and user. We see that it is more difficult determine differences among
the covariate coefficients due to similarities in their magnitudes and the overlap in
the 95% confidence intervals (not shown).

4.2.2 The Doer Effect by Prior Experience

We then consider how context of prior experience affects the manifestation of the doer

effect. In particular, we seek to understand how different actions are correlated with

success for students of different experience groups.

Using Coefficient Ratios to Compare Prior Experience

To understand this effect, we examine the ratios of coefficients for the experience

groups in Table 4.1. A ratio of the coefficient for a covariate for all students to the

same coefficient for a subgroup informs us of the effect of that covariate for a specific

group. Thus, we can characterize the effectiveness of a particular feature 𝑅𝑓
𝑠 where 𝑓

is the feature and 𝑠 is the survey subgroup as follows:

𝑅𝑓
𝑠 =

𝛽𝑓
𝑠

𝛽𝑓
𝑎𝑙𝑙

The coefficient value for each action and each prior experience group is listed in

Table 4.2. Using this metric, we see that 𝑅𝑣𝑖𝑑𝑒𝑜,𝑤𝑖𝑡ℎ𝑖𝑛
𝑣𝑒𝑡𝑒𝑟𝑎𝑛 = 2 whereas 𝑅𝑣𝑖𝑑𝑒𝑜,𝑤𝑖𝑡ℎ𝑖𝑛

𝑛𝑜𝑛𝑒 = 0.75,

indicating that watching videos is more highly correlated with success for veterans

than for students without experience. Likewise, we see that for all survey groups

46



All Took 6.00.1x Know Python No Response
features coef p-value coef p-value coef p-value coef p-value

video within -0.10 0.00 -0.14 0.00 -0.25 0.01 - -
video before 0.16 0.00 0.14 0.00 - - 0.16 0.00
video after -0.07 0.00 -0.09 0.00 - - - -
reveal within 0.17 0.00 0.17 0.00 0.25 0.01 0.13 0.00
reveal before - - - - - - - -
reveal after - - - - - - - -
check before 0.04 0.01 0.08 0.03 - - - -
check within 0.06 0.00 0.14 0.00 - - 0.15 0.00
check after - - - - - - - -

Table 4.4: These regressions utilize the same model as those in Table 4.1, though for
6.00.2x. The corresponding groups are for 6.00.2x, for which the survey responses
were slightly different. Note that while a ‘no experience’ option existed in the survey,
only 2 of these students completed the course, so a meaningful regression was not
possible. Again, only coefficients significant at the 𝑝 = 0.05 level are included.

except veterans, 𝑅𝑐ℎ𝑒𝑐𝑘,𝑤𝑖𝑡ℎ𝑖𝑛
𝑠 ∼ 2, but for veterans, checking problems within the unit

is not a significant covariate 2. This relationship indicates that for students with prior

experience, doing is less correlated with success, whereas videos are more correlated

with success.

An Alternate Prior Experience Comparison

We additionally offer an alternate method of comparing coefficients among the dif-

ferent groups. In this case, we use a similar method as that displayed in Table 3.2.2,

though using the feature engineering method used above. The results of this analysis

are shown in Table 4.3. We see that it is more difficult to make distinctions in the

power of the covariates for the different groups. Using this method, checking prob-

lems within unit is highest for students with some experience i.e. those who know

Python or another language, compared to those with no experience. We do, however,

note that this is not a strong difference and more analysis may be required.

2We note that relatively few veterans completed the course, which may bias our estimates.
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4.2.3 The Doer Effect in Advanced Courses

We now consider whether the material of a subject influences the presence of a doer

effect i.e. is the doer effect present in a course with more advanced material. To

address this question, we consider a second course on edX, 6.00.2x, Introduction to

Computational Thinking and Data Science. This topic typically has fewer students

enrolled with four units instead of six. On edX, the expected trajectory is for students

with no experience to complete 6.00.1x and then 6.00.2x. We replicated our method

for the more advanced course, shown in Table 4.4, and in this case, we will compute

a statistic 𝑄𝑐
𝑎𝑑𝑣 – the ratio of the magnitudes of regression coefficients where 𝑐 is the

course:

𝑄𝑐
𝑎𝑑𝑣 =

𝛽𝑐
𝑟𝑒𝑣𝑒𝑎𝑙

𝛽𝑐
𝑐ℎ𝑒𝑐𝑘

We can now compute 𝑄6.00.1𝑥
𝑎𝑑𝑣 ≈ 1.5 and 𝑄6.00.2𝑥

𝑎𝑑𝑣 ≈ 4 in order to compare the

relative strength of correlations for different courses. We thus see that the ‘show

answer’ feature is much stronger in the more advanced course; students who elect to

reveal solutions more often than the average student fare well. We also note that

watching videos is actually negatively correlated with success in the more difficult

course, indicating that the more time a student spends watching videos above the

mean video watching time, we can expect problem set score to decrease. We have

also included the coefficients for different survey response groups. We see that both

for students who know Python and those that took 6.00.1x, most of the effects seen

for all students hold true. This could indicate that for more conceptually advanced

material, prior experience factors less into performance.

4.2.4 The Doer Effect in the Long Term

The final question when considering the presence of the doer effect was time: does

the doer-effect exist when students are assessed on material in the short-term and the

long-term. In the courses we analyze, students’ grades are determined by performance

on problem sets for each unit as well as a final exam at the end of the term. Because
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All Know Python No Experience No Response Other Language Veteran
features coef p-value coef p-value coef p-value coef p-value coef p-value coef p-value

check 0.03 0.00 - - - - - - 0.05 0.00 - -
reveal -0.08 0.00 - - -0.09 0.01 - - -0.05 0.04 -0.26 0.03
video 0.21 0.00 0.24 0.00 0.23 0.00 0.23 0.00 0.20 0.00 0.29 0.02

Table 4.5: This regression models problem set grades as a function of student activity
for the 6.001x final exam. On the left are the different (learning mode, time scale)
combinations for which students can complete activities for a particular unit. The
columns indicate different subsets of students based on their prior experience, with
the first column describing all students. Because we are modeling the final exam,
there is no distinction for "within-unit" activities, and the student’s activity over the
entirety of the course is used to construct features. Only coefficients significant at
the p=0.05 level are included.

the final exam concerns material from the entire course, we use it a proxy for long-term

learning. In order to compare final grade coefficients with problem set coefficients, we

again define a ratio to apply to each regression, 𝑆𝑚 where 𝑚 is the measure of time,

either short (measured by problem sets) or long (measured by final exams):

𝑆𝑚 =
𝛽𝑚
𝑣𝑖𝑑𝑒𝑜

𝛽𝑚
𝑐ℎ𝑒𝑐𝑘

In this, case, 𝑆𝑠ℎ𝑜𝑟𝑡 ≈ 1.33 whereas 𝑆𝑙𝑜𝑛𝑔 ≈ 7.0, indicating that when completing

the final, the relative number of videos watched over the term is a better indicator of

student performance than completing problems. The discrepancy in the ratios tells

us that when learning material in the long term, the doer-effect tends to give way to

watching videos. We also note, with input from the course instructor, that final exam

problems are more general and require less mastery of the content of the course than

the individual problem sets.

4.2.5 The Doer Effect for Specific Topics

Learning computational thinking encompasses many skills, Many of which are quite

different from traditional modes of cognition [21]. Additionally, different topics within

computer science are also quite different such as search/sort algorithms and object-

oriented programming. In order to understand how the doer effect manifests across

49



Bisection Search Recursion Object-Oriented Programming Complexity
features coef coef coef coef

video 0.01 0.14 0.42 0.44
reveal 0.07 -0.08 0.17 0.24
check 0.31 0.09 0.22 0.26

Table 4.6: To better study specific subjects, we formulate our regression problem
to predict student grades on problems in a problem set that assess a certain topic;
the features, are constructed similarly as for the previous results, but here, we only
select videos that correspond to the topic as well as specific finger exercises that also
correspond to the topic. Thus while the content for a particular unit may include
many topics, we seek to isolate specific topics. All coefficients listed are significant at
the p=0.01 level

different topics, we studied four topics recommended by the 6.00.1x instructor: re-

cursion, object-oriented-programming, complexity theory, and bisection search. We

used a similar regression model, though with slightly different predictors. Instead of

considering all videos watched/exercises attempted, we only consider material that

covers the topic of interest.

From the results, shown in Table 4.6, we find that the correlation between different

learning modes and student performance is highly variable over different topics. We

start by examining the coefficients for videos which are almost negligible in the case

of bisection search (0.01), but highly correlated with succeeding in object-oriented

programming (0.42) and complexity (0.44). Likewise, checking solutions was similarly

related to performance for complexity, object-oriented programming, and bisection

search (∼0.26), but much less so for recursion (0.09). Finally, we see that revealing

solutions is correlated with learning quite differently as well, even being negatively

correlated with assessments on recursion (-0.08). When considering these results, we

do take into consideration that certain topics, such as recursion did not show up

on the final exam, perhaps deincentivizing learning the concepts. Additionally, the

number of exercises available to students for each topic varies; for example, students

were not given ample exercises to learn complexity, perhaps changing their behavior

when learning the underlying concepts.
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4.3 Discussion

The doer effect, while definitely present, is not without caveats. We saw that doing

is at least as effective as watching videos for the general student population, but

this relationship broke down when we considered students of different experience

levels. Instead, we saw that while doing was still correlated with success for most

groups of students, for the ‘veterans,’ watching videos was uniquely correlated with

success. We then considered the more difficult 6.00.2x course, where we saw that

doing is still prevalent albeit in a different form. Students who elected to reveal

solutions were doing comparatively better than those who took the same action in

the more basic course. When considering the long term and the short term, we saw

a stark difference in the relationship between performance and doing. While doing

and watching are similar in the short term, watching videos proved to be a much

better indicator of long-term knowledge. Finally, we consider the doer effect for a

smattering of different canonical topics, finding that the doer effect varies as one may

expect: Concepts like object oriented programming appear to be learnable via trial

and error on finger exercises whereas more nuanced concepts like complexity seem to

be better approached with videos.

These findings both support and contradict our results from Chapter 3 when we

utilized methods from prior works [13]. Some results were found regardless of the

method i.e. that within-unit doing is correlated with higher assessment grades for

all students in the standard course (6.00.1x) as well as in the more advanced course,

6.00.2x. Where the methods produce different results is when we consider prior

experience. Using the work presented in the literature, we saw that watching videos

is correlated with success for novices and veterans, while those in the middle of the

knowledge spectrum used finger exercises. However, using the enriched definitions of

doing, we saw that finger exercises were correlated with success in all students except

veterans. It is possible that the results presented in Chapter 3 do not differentiate

the veterans because the veterans are accessing all the materials like other students.

Where they may differ in their actions is the actual number of minutes watched
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or number of times solutions are checked. In this case, the enriched features may

give veterans more space to differentiate their actions compared to other students,

validating the results we saw in this chapter.
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Chapter 5

Predicting Prior Experience in a

MOOC

A MOOC cohort will often have students with varying experience levels. Our work

in previous chapters shows that students who self-identify as "veterans" may have

different behaviors than other students who are unfamiliar with the material. Being

able to isolate these students in a data set containing hundreds or thousands of stu-

dents allows us to make stronger conclusions from our data; additionally, identifying

veterans in a live MOOC setting can also be informative to instructors in a course

with thousands of students. When students enroll in a MOOC, we can collect basic

demographic information, such as age, level of education, and country. We can also

observe a student’s behavior on the MOOC platform such as their video-watching

tendencies. Using this information, we wish to develop a classification model for

veterans in a MOOC setting.

5.1 Method

Classification is well-studied topic in machine learning, with different methods offering

different advantages. Logistic regression is one such method that often performs well,

but is agnostic to prior information about our data, and prevents us from exploiting

structure in our data such as related measurements.
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5.1.1 Hierarchical Models

A canonical manifestation of these shortcomings is Gelman et al. 2017’s Radon

data set, where the level of radon in a home was measured in many homes in many

different counties across the US; the data contains measurements for many homes in

some counties and sometimes very few measurements per county. There are thus two

ways to model the radon levels in a home. First, we can assume that all counties

are identical and estimate a single regression for all the measurements in the dataset

(pooled model). Alternatively, we could assume that counties share no similarities and

estimate a regression for each county (unpooled model). However, neither of these

models are realistic. Bayesian Hierarchical Models allow us to share information

about different subsets of data, by assuming that all county regression coefficients are

drawn from the same distribution [9].

Due to the nature of our data, where we have both demographic and behavioral in-

formation available for individual students. We will explore how a hierarchical model

can improve our classification efforts while providing a greater degree of flexibility in

fitting our model as well as being more interpretable across our data.

Due to improved, off-the-shelf samplers becoming more robust, Bayesian modeling

is become more viable because more complex posterior distributions can be better

approximated. NUTS, which adds adaptive tuning to Hamiltonian Monte Carlo is an

often used sampling method when integration is computationally infeasible [11].

Bayesian methods are especially popular in creating hierarchical generalized linear

models (GLMs). GLMs have three components: a probability distribution of the

predictor i.e. 𝑌 ∼ 𝑁(𝜇, 𝜎2), a linear predictor i.e. 𝜇 = 𝑋𝛽, and a link function: that

relates 𝐸[𝑌 ] to the linear predictor, i.e. log𝐸[𝑌 ] = 𝜇. This format generalizes well

to many models such as logistic regression by using a logarithmic link function [8, 4].

Hierarchical models also enjoy a unique place in machine learning and data anal-

ysis by allowing us to exploit structure in our data such as certain data points being

more similar or a natural nesting of parameters in our data. Adding a level of hi-

erarchy (as described in the radon example) to a GLM can help model some of the
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Figure 5-1: This figure defines one hierarchical model that we evaluated where we
consider two variables in our logistic regression for which we have two coefficients
𝛽1 and 𝛽2 and an intercept 𝛼. In this model, we assume that these coefficients are
independently drawn from normal distributions 𝑁(𝜇1, 𝜎

2
1), 𝑁(𝜇2, 𝜎

2
2), and 𝑁(𝜇𝛼, 𝜎

2
𝛼).

Regression coefficients/intercepts are drawn once for each class. Here, we show partial
pooling over the possible economic statuses ("developing" or "developed") of the
countries of the user. The veteran status of each user is therefore a Bernoulli random
variable with 𝑝 = the inverse of the logit of 𝑋1𝛽1 +𝑋2𝛽2 + 𝛼.

clustering effects that occur by introducing partial pooling.

The particular generative model that we propose is based on a combination of the

demographic and behavioral information

5.1.2 Data

We will be working with data from the edX platform over two terms of 6.00.1x,

Introduction to Computer Science and Programming Using Python. For each student,

we collect both biographical data and behavioral data from the course itself, which are

described in Table 5.1. Cleverly manipulating these features can allow us to discern

which users are veterans and which are learning material for the first time. Although

tens of thousands of students enroll in the course, only a few thousand complete

the course. Students optionally complete a survey at the beginning of the course

indicating their prior experience with the material. A small fraction of the students
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Demographic Information Behavioral Information

Gender # pause video
Level of education # seek video
UN Economic Group # seq goto
UN Major Region # unique videos viewed
Year of birth # videos viewed

# show answer
# problem check
# chapters
# play video
# days active
# events

Table 5.1: We use a mix of demographic and behavioral features to classify students.
The ’UN Economic Group’ tells us whether the user’s country is classified by the UN
as ’developed’ or ’developing’. Likewise, the ’UN Major Region’ tells us the region
such as ’Western Europe,’ ’Southern Asia,’ etc, which is slightly less granular than
the user’s actual country or even city. Additionally, we map education levels to the
equivalent years of schooling i.e. five for elementary school, twelve for high school,
sixteen for undergraduate. Behavioral information is collected from the entirety of
the student’s enrollment in the course; features generally count the number of times
a student took an action on the edX platform such as pausing a video or revealing a
solution.

complete the survey and a small fraction of these students identify themselves as

"veterans". In order to balance the data set, we considered a random sample of

students equal to the far fewer number of veterans and then used a 80% - 20% train-

test split.

5.1.3 Models

We start with the baseline model: a non-Bayesian logistic regression model based

on the features listed in Table 5.1. The non-Bayesian model does not consider any

similarities across different hierarchies in the data, instead treating every variable to

be of the same level.

We then consider a hierarchical model where we partially pool regression coeffi-

cients over students whose countries are of the same economic development status.

The motivation for partial pooling over the economic status of the country is two-
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fold. First, the coefficients for features such as age and level of education may be

different in countries with different development statuses. Second, it is likely that

among each of these subgroups the training data is unbalanced i.e. there are fewer

students coming from developing countries, leading to more biased estimates.

This trade-off between needing to share information between groups while having

minor differences motivates the need for a partial-pooling hierarchical model. Note

that while we would pool over these demographic variables, we would consider be-

havioral variables independent of these hierarchies and would estimate one coefficient

for the entire set of training data for behavioral features. That is, we would consider

all students, independent of the partial pooling cluster to have similar coefficients

dictating actions like watching videos or completing problems. We have illustrated

the hierarchical portion of the corresponding graphical model in Figure 5-1.

We then consider a similar model, where instead of partial pooling over economic

groups, we partially pool over geographic regions. The motivation here is that pooling

over regions is either as informative or more informative than doing so over economic

groups because individuals from the same region will be more similar than those from

the same economic group.

5.2 Experiments and Results

Our baseline is a standard logistic regression model with 122 data points and an

80-20 train-test split – results shown in Table 5.2. Examining the odds ratio for the

coefficients makes intuitive sense; when evaluating our models, we want to not only

have high predictive accuracy but also understand what the coefficients say about the

data. In this case, we will consider the predictive accuracy in a subsequent section.

Before examining our results on edX data, we present a hierarchical model run on

simulated data for which the true distribution is known. In this case, we generated

𝑥1,𝑖, 𝑥2,𝑖 ∼ 𝑁(0, 𝐼) , and for half the data, we generated a Bernoulli random variable

𝑦𝑖 ∼ 𝐵𝑒𝑟(𝑙𝑜𝑔𝑖𝑡−1(6𝑥1+3𝑥2+6)) and 𝑦𝑖 ∼ 𝐵𝑒𝑟(𝑙𝑜𝑔𝑖𝑡−1(−4𝑥1+3𝑥2+6)) for the other

half. We then created a hierarchical model with partial pooling for 𝛽1. The trace of
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Coefficient Value Odds ratio

LoE 0.009 1.01
YoB -0.638 0.52
npause_video -0.324 0.72
nseek_video 0.3231 1.38
nseq_goto -0.0644 0.937
nvideos_total_watched -0.0668 0.935
nvideos_unique_viewed -0.0668 0.935
nshow_answer -0.4003 0.67
nproblem_check 0.0045 1.01
nchapters -0.1686 0.85
nplay_video -0.1109 0.900
ndays_act -0.2535 0.776
nevents 0.3725 1.45

Table 5.2: We can understand our regression coefficients by considering exp 𝛽, which
gives us the odds ratio if a variable increases by 1. Observing some of the values, we
see that having more events i.e. clicks, substantially increases the odds that a user is
a veteran as does seeking out specific points in the course videos. We also see that
higher years of birth decrease odds of a veteran, which is also sensible (higher birth
year = younger).

the posterior is shown in Figure 5-2. In this case, we see that the sampled posterior

does in fact correctly approximate the coefficients used to generate the data, with the

modes for 𝛽1 occurring very close to the true values. While we did not expect the

posteriors over 𝛼 to be so different, we are more concerned with the coefficients than

the intercept because they tell us more about the strength of different predictors in

each of the pools. Finally, we see that the modes of 𝛽2 are close to the true value,

indicating that the hierarchical model accurately infers the parameters.

We now consider the edX data, first looking at both an unpooled (traces in Figure

5-4) and partially pooled (traces in Figure 5-3) model.

Comparing these two models, we see a few major differences. First, without the

imposition of a prior on the coefficients of the unpooled data, we see smoother poste-

riors over possible values, whereas when using a partial-pooling model, the posteriors

look less like the normal distribution we expect. Nonetheless, it is clear that the

distributions over the coefficients and intercept are similar in both cases. One reason

for this is the uninformative prior that we imposed in the partial pooling model that
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Figure 5-2: A unit test trace of simulated data where two different values of 𝛽1 were
used to generate data. The simulated data indicates that the model works as intended
with the posterior distributions of 𝛽1 falling on the two simulated values. We would
create two classifiers, one where 𝛽1 is equal to the mode of each of the traces.
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Figure 5-3: The trace plots represent posterior distributions for the logistic regression
coefficients of a model that is partially pooled on economic group. The flatter dis-
tributions correspond to developing economic groups. 𝛽1 corresponds to a student’s
level of formal education and 𝛽2 corresponds to a student’s year of birth. We see two
posterior distributions because we’ve created a two dimensional Gaussian distribution
over each coefficient to allow for an estimate over each class of data. The traces are
noisier beacause they must fit the data in each class while still being constrained by
the priors on the parameters.
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Figure 5-4: The trace plots represent posterior distributions for the logistic regression
coefficients of a model with unpooled data i.e. each economic group treated inde-
pendently. The flatter distributions correspond to developing economic groups. 𝛽1

corresponds to a student’s level of formal education and 𝛽2 corresponds to a student’s
year of birth. While this is similar to the trace plots for the partially-pooled model,
we see smoother estimates of the posterior because we are no longer constraining the
coefficients for each class to be drawn from the same distribution.
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allowed the posteriors on coefficients to take on any mean and length-scale[7, 17];

had we had a more informative prior, we could have expected more shrinkage in the

partial-pooling model. We also see that these parameters are similar to those ob-

tained in the logistic regression baseline. For example, the odds ratio in all three

cases is greater than 1 for level of education but less than 1 for year of birth.

5.2.1 Other pooling methods

In addition to partially pooling users on the economic status of their country, we

could partially pool on other factors, i.e. the country itself or the geographic region

of the country. One can imagine that partial pooling on the country itself would be

perhaps more effective than on the economic status because we have more granular

information in our hierarchy. However, the most pertinent issue with this model

is a lack of data. Creating a meaningful hierarchical model requires us to have a

reasonable amount of data for each cluster in the hierarchy. While we can always use

the hyper parameter priors to inform the posterior of a cluster with few data points,

this would indicate that our partial-pooling method was too granular to begin with.

In addition to partial pooling on the economic group, we also compared partially

pooled and unpooled analysis on the region of the country of the learner. One benefit

was that although the unpooled model did not converge because in many countries

there was not a single veteran enrolled in the course meaning the logistic regression

model could not converge, the partially pooled model was able to create a posterior

for each region, though of course regions with limited data were very similar.

5.2.2 Shrinkage

One beneficial aspect of partial pooling is additional information for clusters with

fewer data points where our estimates are more biased. In this case, shrinkage will

bring parameters over the hierarchical clusters closer together. For example, referring

to Gelman’s Radon data set, if some counties have over 30 measurements while others

have only 1 or 2 measurements, partial pooling allows us to have a less biased estimate
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Economic Group # Students

Developed 92
Developing 30

Table 5.3: While our test set is balanced, the number of veterans in developing
countries is far fewer than that in developed countries.

for counties with fewer measurements. Upon closer inspection of our data set, we

see that unpooling our data based on economic region was problematic due to this

lack of data, indicated by Table 5.3. The imbalance of data among these groups is

important because this causes the posterior over the developing regions coefficient in

the unpooled estimates to have a higher variance. However, when using the partially-

pooled estimates, we would anticipate that despite having fewer observations in the

developed regions, we can still obtain reasonable estimates of these values specifically

because of the parameter sharing [19].

In order to visualize parameter shrinkage, we’ve shown how the partially-pooled

model shrinks the parameter space by plotting both models in the 𝛽1-𝛽2 space. We

have included a plot comparing pooling to partial-pooling and an unpooled method

to a partial-pooling method in Figure 5-6 and Figure 5-5.

5.2.3 Accuracy

One of the main metrics of any classification problem is the accuracy of the classifier,

shown in Table 5.4. Some caveats here are that having more data would make these

results more robust, and while we have constructed a balanced data set to both train

and test our model to avoid the problem of class imbalance, the real distribution

over veterans is highly imbalanced with only 2-3% of enrolled students identifying

as veterans. The performance of the Partially Pooled Major Region Model tells us

that by dividing our data by region and partially pooling the clusters, we can obtain

higher accuracies than with a standard logistic regression model.
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Figure 5-5: The x-axis is 𝛽1 and the
y-axis is 𝛽2. The red scatter plot rep-
resents the model parameters over the
two clusters in the economic groups
when unpooled. The blue plots repre-
sent the economic groups when pooled.
The arrows show the movement in the
coefficient space, showing how the pa-
rameters exhibit some shrinkage when
partial pooling is implemented.

Figure 5-6: The x-axis is 𝛽1 and the
y-axis is 𝛽2. The red scatter plot in-
dicate the coefficients for each region
with full pooling, and the blue scat-
ter plot indicates the coefficients when
partial-pooling is used. Here we see
that partial pooling allows for the re-
gions to take on very different param-
eters. Regions with less data cling to
the mean

Model Accuracy

Unpooled Economic Group 0.67
Partially Pooled Economic Group 0.67
Unpooled Major Region 0.62
Partially Pooled Major Region 0.76
Baseline 0.72

Table 5.4: We indicate predictive accuracies on a balanced test set of size 𝑛 = 14.
We see that the accuracy is similar across all models with a model Partially Pooled
on Major Region giving the highest accuracy.
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5.2.4 Convergence

The main statistic that we used to evaluate whether or not our NUTS sampler con-

verged was the Gelman-Rubin method i.e. 𝑅̂ is the ratio the average variance of the

chains to the variance of all chains combined [3]. Literature as well as the PyMC

library suggest that if this value is close to or greater than 1.01 then there may be an

issue; we found that for all reported results, this was not an issue. While literature

on monitoring the convergence of MCMC methods suggest using multiple metrics to

evaluate whether a divergence occurred, reasonable accuracy on test data along with

intuitive signs on coefficients seemed to indicate that the sampling was reasonable.

For all results we used a burn in of 1000 samples and collected 4000 samples.

5.3 Discussion

Using hierarchical Bayesisan logistic regression allowed us to take a different approach

to this problem. We found that by partially pooling our data on economic groups

and major geographic regions, not only do we end up with posterior distributions

that give us an idea of our confidence in the slope of our logistic curve, but we also

get a more interpretable model of the nuances of our data, for example how certain

parameters may differ over different pooling clusters as well.

We posit that this hierarchical model informed by some socioeconomic hierarchy

of the student’s location can be very powerful in modeling students in the MOOC

setting where students come from very different backgrounds (both academically and

geographically).

While this model proves useful in addressing the idea of identifying veterans, we

believe that a more granular partial-pooling method, such as the actual country of the

user combined with more informative priors to increase shrinkage may give a better

model, along with of course, more data.
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Chapter 6

Conclusions & Future Work

Through this work, we have considered the doer effect across many contexts. We em-

ployed data from two courses on the edX platform: 6.00.1x, Introduction to Computer

Science and Programming Using Python, and 6.00.2x, Introduction to Computational

Thinking and Data Science. We implemented a model similar to that presented in

the literature [13], and we found similar results among most cohorts of students: The

doer effect was consistently highly correlated with high performance on assessments.

We then refined this model by allowing for greater granularity in our feature selec-

tion by redefining our measures of doing and video-watching. Considering the same

cohort of students, we found similar results in many cases, though when considering

the prior experience of students, our results differed. While the methods presented

in the literature found ‘doing’ to be correlated with success for novices and veterans,

our more granular method found watching videos to be uniquely correlated with do-

ing for veterans. We posit that our more precise feature engineering may highlight

the subtler behaviors of veterans that lead to this result. To further examine prior

experience, we developed a classifier to predict the veterans in a MOOC cohort. Our

logistic regression model uses partial-pooling to accommodate smaller, imbalanced

data sets and achieve better accuracy than a standard logistic regression.

In future work, we will continue to improve our model of student behavior. Consid-

ering the prior experience prediction method, we will refine the model by using more

data and accounting for class imbalance. We will modify our definition of ‘doing’
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to better differentiate student behavior. We can use our prior experience prediction

methods to identify the prior experience level of students who we do not have prior

experience information to obtain better estimates of the doing and video-watching

coefficients. Finally, we can consider the impact of our model selection and experi-

ment with regularized regressions and different linear models to better approximate

the relationship between student behavior and performance.
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