
Stopout Prediction in Massive Open Online

Courses
by

Colin Taylor
B.S., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

c© Colin Taylor, MMXIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering

and Computer Science
May 28, 2014

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kalyan Veeramachaneni

Research Scientist
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee



2



Stopout Prediction in Massive Open Online Courses

by

Colin Taylor

Submitted to the Department of Electrical Engineering
and Computer Science

on May 28, 2014, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Imagine your favorite college professor standing behind a podium in the center of
Michigan Stadium in Ann Arbor, lecturing 109,000 students. Though that sounds like
an unlikely scenario, Massive Open Online Courses, MOOCs, have practically made
that a reality by offering previously exclusive classes to mass audiences. However, as
the barriers to entry for MOOCs are very low, student dropout, referred to as student
‘stopout’ [2], is very high. We believe that studying why students stopout will enable
us to more fully understand how students learn in MOOCs.

This thesis applies a variety of machine learning algorithms to predict student per-
sistence in MOOCs. We built predictive models by utilizing a framework that went
through the following steps: organizing and curating the data, extracting predictive,
sophisticated features, and developing a distributed, parallelizable framework. We
built models capable of predicting stopout with AUCs1 of up to 0.95. These models
even give an indication of whether students stopout because of predisposed motiva-
tions or due to course content. Additionally, we uncovered a number of findings about
the factors indicative of stopout. These factors are presented in Chapter 10. Through
the prediction framework we hope to help educators understand the factors of persis-
tence in MOOCs and provide insight that prevents stopout. To our knowledge, this
is the first in-depth, accurate prediction of stopout in Massive Open Online Courses.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

1area under the curve of the receiver operating characteristic
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Chapter 1

Introduction

1.1 Overview

Massive Open Online Courses (MOOCs) leverage digital technologies to teach ad-

vanced topics at scale. MOOC providers such as edX and Coursera boast hundreds

of classes developed by top-tier universities including MIT, Harvard, Stanford and

Berkeley. Renowned Professors record their lectures, and when needed, use interac-

tive whiteboards to explain concepts. Recordings are delivered all over the world via

web servers at no cost to the learner. Far from compromising the quality of course

content, the Internet provides a flexible medium for educators to employ new instruc-

tional tools. For example, videos enable students to pause, rewind, review difficult

concepts and even adjust the speed. In addition, MOOCs allow the learner the flex-

ibility to learn in his or her own time frame. Finally, according to Sanjay Sarma,

the head of the Office of Digital Learning at MIT, MOOC lecture durations match

the brain’s ideal length of time needed to grasp a new concept. He explains “there is

a lot of pedagogical literature that shows that ... students’ ideal attention span for

learning things is 10-15 minutes.” [6] Only in the online medium are short lectures

logistically feasible through videos. MOOCs are changing the face of education by

providing an alternative to the one-size fits all learning concept employed by hundreds

of universities.

The specific layout of each MOOC varies, but most follow a similar format. Con-
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tent is sectioned into modules, usually using weeks as intervals. Most MOOCs include

online lectures (video segments), lecture questions, homework questions, labs, a fo-

rum, a Wiki, and exams. Students advance through the material sequentially, access

online resources, submit assignments and participate in peer-to-peer interactions (like

the forum).

Not surprisingly, MOOCs have attracted the attention of online learners all over

the world. The platforms boast impressive numbers of registrants and individuals

who complete online course work. For example, MITx offered its first course 6.002x:

Circuits and Electronics in the Fall of 2012. 6.002x had 154,763 registrants. Of those,

69,221 students looked at the first problem set, and 26,349 earned at least one point.

9,318 students passed the midterm and 5,800 students got a passing score on the final

exam. Finally, after completing 15 weeks of study, 7,157 registrants earned the first

certificate awarded by MITx, showing they had successfully completed 6.002x. For

perspective, approximately 100 students take the same course each year at MIT. It

would have taken over 70 years of on-campus education to grant the same number of

6.002x certificates that were earned in a single year online.

While the completion rates are impressive when compared to in-class capacity,

they are still low relative to the number of people who registered, completed certain

parts of the course or spent a considerable amount of time on the course. To illustrate,

in the above scenario approximately 17% attempted and got at least one point on

the first problem set. The percentage of students who passed the midterm drops to

just 6%, and certificate earners dwindles at just under 5%. 94% of registrants did not

make it past the midterm.

How do we explain the 96% stopout rate from course start to course finish? Ana-

lyzing completion rates goes hand in hand with understanding student behavior. One

MOOC research camp advocates analyzing student usage patterns– resources used,

homework responses, forum and Wiki participation – to improve the online learn-

ing experience thereby increasing completion rates. Other researchers question the

feasibility of analyzing completion rates altogether because the online student body

is unpredictable. For example, some students register online because it is free and
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available with little or no intention of finishing. Some students who leave may lack

motivation, or could leave due to personal reasons completely unrelated to MOOCs.

As a result, interpreting completion rates is not a straightforward exercise. However,

we believe that if we are to fully understand how students learn in MOOCs, we need

to better understand why students stopout. Building accurate predictive models is

the first step in this undertaking.

This thesis tackles the challenge of predicting student persistence in MOOCs. We

believe a three pronged approach which comprehensively analyzes student interaction

data, extracts from the data sophisticated predictive indicators and leverages state-

of-the-art models will lead to successful predictions. To our knowledge, this is the

first comprehensive treatment of predicting stopout which produces and considers

complex, multi-layered interpretive features and fine tuned modelling.

This thesis presents the work we did to build analytical models capable of pre-

dicting student persistence. We focus on the aforementioned course, the Fall 2012

offering of 6.002x: Circuits and Electronics. We extracted 28 interpretive features

hypothesized to indicate future persistence. We used a parallelization framework to

construct hundreds of different models using a variety of techniques. We demonstrate

that with only a few weeks of data, machine learning techniques can predict persis-

tence remarkably well. For example we were able to achieve an area under the curve

of the receiver operating characteristic of 0.71, given only one week of data, while

predicting student persistence in the last week of the course. Given more data, some

of the models reached an AUC of 0.95, indicating fantastic predictive power.

1.2 Research findings

After applying the steps outlined in the upcoming chapters, we were successfully

able to predict stopout for the Fall 2012 offering of 6.002x. Through analysis of the

resulting models, we uncovered a myriad of findings, including the following:

• Stopout prediction is a tractable problem. Our models achieved an AUC (re-

ceiver operating characteristic area-under-the-curve) as high as 0.95 (and gen-
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erally ∼0.88) when predicting one week in advance. Even with more difficult

prediction problems, such as predicting student stopout at the end of the course

with only one week’s data, our models attained AUCs of ∼0.7. This suggests

that early predictors of stopout exist.

• A crowd familiar with MOOCs is capable of proposing sophisticated features

which are highly predictive. The features brainstormed by our crowd-sourcing

efforts were actually more useful than those we thought of independently. Ad-

ditionally, the crowd is very willing to participate in MOOC research. These

observations suggest the education-informed crowd is a realistic source of mod-

eling assistance and more efforts should be made to engage it.

• Overall, features which incorporate student problem submission engagement

are the most predictive of stopout. As our prediction problem defined stopout

using problem submissions, this result is not particularly surprising. however

submission engagement is an arguably good definition.

• In general, complex, sophisticated features, such the percentile of a student

when compared to other students (x202, Table 3.2), which relates students to

peers, and lab grade over time(x207, Table 3.2), which has a temporal trend, are

more predictive than simple features, such a count of submissions (x7, Table

3.1).

• Features involving inter-student collaboration, such as the class forum and Wiki,

can be useful in stopout prediction. It is likely that the quality and content of a

student’s questions or knowledge are more important than strict collaboration

frequency. We found that, in particular, the length of forum posts (x5, Table

3.1) is predictive, but the number of posts (x3, Table 3.1) and number of forum

responses (x201, Table 3.2) is not. The role of the collaborative mechanism (i.e.

Wiki or forum) also appears to be distinctive since, in contrast to forum post

length, Wiki edits have almost no predictive power.

• For almost every prediction week, our models find only the most recent four

22



weeks of data predictive.

• Taking the extra effort to extract complex predictive features that require rel-

ative comparison or temporal trends, rather than employing more direct co-

variates of behavior, or even trying multiple modeling techniques, is the most

important contributor to successful MOOC data science. While we constructed

many models with a variety of techniques, we found consistent accuracy aris-

ing across techniques which was dependent on the features we used. Using

more informative features yielded superior accuracy that was consistent across

modeling techniques. Very seldom did the modeling technique itself make a

difference. A significant exception to this is when the model only has a small

number of students (for example,∼ less than 400) to learn from. Some models

perform notably better than others on less data.

• Employing dimensionality reduction, such as principal component analysis (PCA),

generally did not improve the predictive accuracy of our models. However, it

did significantly speed up our model generation run time. We applied PCA only

to discretized data to train hidden markov models (HMMs).

• By using HMMs we gain support for our hypothesis that the observations we

gather about students reflect a hidden state or ‘’latent variable’. We speculate

that this state is related to engagement or interest. Our models uncovered

different quantities of modes for this hidden state which depended on the cohort

of students. For some cohorts, such as passive collaborator students, the number

of modes seems to exceed 29, as increasing this number in our HMMs never

stopped producing better results. However, for forum contributor cohort, the

number of modes is only around 11.

1.3 Contributions of this thesis

This thesis provides the following contributions to MOOC research and educational

data science:
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• Successfully predicted stopout for the Fall 2012 offering of 6.002x. The major

findings of the predictive models are found in Chapter 10.

• Extracted 28 sophisticated, interpretive features which combine student usage

patterns from different data sources. This included leveraging the collective

brain-power of the crowd.

• Utilized these features to create a series of temporal and non-temporal feature-

sets for use in predictive modelling.

• Created over 10,000 comprehensive, predictive models using a variety of state-

of-the-art techniques.

• Built and demonstrated a scalable, distributed, modular and reusable frame-

work to accomplish these steps iteratively.

The strongest contribution of this thesis is the design, development and demon-

stration of a stopout prediction methodology, end to end, from raw source data to

model analysis. The methodology is painstakingly meticulous about every detail of

data preparation, feature engineering, model evaluation and outcome analysis. As a

result of this thoroughness, research of stopout analysis exits an immature stage of

ad-hoc data preparation and results, with insufficient details to allow replication or

systematic advancement of knowledge. We document a methodology that is repro-

ducible and scalable, and that will soon be applied on a number of additional edX and

Coursera courses with the expectation of similar success. In addition, the methodol-

ogy and software will shortly be released to interested educational researchers.

1.4 Outline of this thesis

The thesis is organized into the following chapters:

• Chapter 2 describes the preparation of the received 6.002x data.
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• Chapter 3 presents the interpretive features extracted to create the predictive

models.

• Chapter 4 describes the framework used to validate our predictive models.

• Chapter 5 details the logistic regression models and presents the ensuing con-

clusions.

• Chapter 6 outlines a temporal modelling technique called hidden markov models

and the predictive results.

• Chapter 7 presents a stacked model using both techniques and overviews our

findings.

• Chapter 8 describes the results of using a generalized predictive modeling frame-

work, Delphi.

• Chapter 9 highlights the parallelization framework used to build predictive mod-

els at scale.

• Chapter 10 concludes with high level perspective and reflections on the chal-

lenges and overall endeavor of data science.
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Chapter 2

Data Curation

2.1 Data organization into MOOCdb

As previously mentioned, we focused on the Fall 2012 offering of 6.002x: Circuits and

Electronics. edX provided the following raw data from the 6.002x course:

• A dump of click-stream data from student-browser and edX-server tracking logs

in JSON format. For instance, every page visited by every student was stored

as a server-side JSON (JavaScript Object Notation) event.

• Forum posts, edits, comments and replies stored in a MongoDB collection.

Note that passive forum data, such as how many views a thread received was

not stored here and had to be inferred from the click-stream data.

• Wiki revisions stored in a MongoDB collection. Again, passive views of the

Wiki must be inferred from the click-stream data.

• A dump of the MySQL production database containing student state informa-

tion. For example, the database contained his/her final answer to a problem,

along with its correctness. Note that the history of his submissions must be

inferred from the click-stream data.

• An XML file of the course calendar which included information like the release

of content and the assignment deadlines.
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Figure 2-1: Multiple data sources received from edX with their corresponding for-
mats

Figure 2-1 summarizes the raw data received.

This data included:

• 154,763 registered students

• 17.8 million submission events

• 132.3 million navigational events 1

• ∼90,000 forum posts

To analyze this data at scale, as well as write reusable analysis scripts, we first

organized the data into a schema designed to capture pertinent information. The

resulting database schema, MOOCdb, is designed to capture MOOC data across

platforms thereby promoting collaboration among MOOC researchers. MOOCdb

utilizes a large series of scripts to pipe the 6.002x raw data into a standardized schema.

More about MOOCdb can be found in the MOOCdb Tech report, but the details are

outside the scope of this thesis [3].

1We received more navigational events, but only 132.3 million were well formed enough to be
reliably considered for this thesis.
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Through the labor intensive process of piping the raw data into a schematized

database, we were able to significantly reduce the data size in terms of disk space.

The original ∼70GB of raw data was reduced to a ∼7GB MOOCdb through schema

normalization. The transformation was crucial in order to load the entire database

into RAM enabling prompt queries and feature extractions. Figure 2-2 shows a snap-

shot of the original JSON transactional data transformed into a normalized schema.

Figure 2-2: Piping data into MOOCdb

2.2 Prediction problem assumptions

We made several assumptions to more precisely define the stopout prediction problem

and interpret the data. These assumptions include time-slice delineation and defining

persistence (stopout) as the event we attempt to predict.

2.2.1 Time-slice delineation

Temporal prediction of a future event requires us to assemble explanatory variables

along a time axis. This axis is subdivided to express the time-varying behavior of

variables so they can be used for explanatory purposes. In 6.002x, course content

was assigned and due on a weekly basis, where each week corresponded to a module.
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Owing to the regular modular structure, we decided to define time slices as weekly

units. Time slices started the first week in which course content was offered, and

ended in the fifteenth week, after the final exam had closed.

2.2.2 Stopout definition

The next question we had to address was our definition of stopout. We considered

defining it by the student’s last interaction in the course, regardless of the nature of

the interaction. This is the approach taken by Balakrishnan in his stopout analysis [1].

However, Balakrishnan’s definition yields noisy results because it gives equal weight

to a passive interaction (viewing a lecture, accessing an assignment, viewing a Wiki

etc) as it does to a pro-active interaction (submitting a problem, midterm, assignment

etc). A student could stop submitting assignments in the course after week 2, but

continue to access the course pages and not be considered stopped out. Instead,

we define the stop-out point as the time slice (week) a student fails to submit any

further assignments or exercise problems. To illustrate, if a student submits his/her

last assignment in the third module, he/she is considered to have stopped-out at week

four. A submission (or attempt) is a submission of any problem type (Homework, lab,

exam etc.), as defined in MOOCdb. This definition narrows the research to students

who consistently participate in the course by submitting assignments. Using this

definition for stopout we extracted the week number when each student in the cohort

stopped out.

Figure 2-3 shows the distribution of stopout week for all 105,622 students who

ever accessed the course. Of these, 52,683 students stopped out on week one. These

students never submitted an assignment, and are never considered in the rest of our

analysis. Another large student drop off point is in week 15, the last week of the

course. Many of these students actually finished the course, but did so by submitting

their final exam in week 14. This nuance presented itself because students had a

range of time to start the final exam, and this range actually overlapped between

weeks 14 and 15. Due to the nature of the final exam time range, we never attempt

to predict week 15, and consider week 14 as the final week.
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Figure 2-3: Stopout week distribution

2.2.3 Lead and Lag

Lead represents how many weeks in advance to predict stopout. We assign the stopout

label (x1, 0 for stopout or 1 for persisted) of the lead week as the predictive problem

label. Lag represents how many weeks of historical variables will be used to classify.

For example, if we use a lead of 5 and a lag of 3, we would take the first 3 weeks of

data to predict 5 weeks ahead. Thus, each training data point is a student’s feature

values for weeks 1, 2 and 3 as features. The binary stopout value for week 8 becomes

the label. Figure 2-4 shows a diagram of this scenario.

We are careful not to use students’ stopped out week’s features as input to our

models. In other words, if a student has stopped out in week 1, 2 or 3, we do not

use this student as a data point. Including stopped out student data makes the

classification problem too easy as the model will learn that a stopped out student
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Figure 2-4: Diagram of the students’ weeks data used in a lead 5, lag 3 prediction
problem

never returns (by our stopout definition).

2.3 Dataset partitioning into cohorts

Rather than treat all students uniformly, we decided to build predictive models for

different types of students. With this in mind we divided the students into cohorts as

a rough surrogate variable for their commitment to the course. We chose four cohorts

based on the students collaborative activity throughout the course. More specifically,

we divided students based on whether or not they participated in the class forum or

helped edit the class Wiki pages. The four types of students are:

• passive collaborator- these students never actively participated in either the

forum or the Wiki. They are named passive because they passively viewed, but

did not contribute to, resources.

• wiki contributor- these students actively participated in the Wiki by generating

Wiki content through their edits, but never actively posted in the forum.

• forum contributor- these students actively posted in the forum, but never ac-

tively participated in the class Wiki.
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• fully collaborative- these students actively participated by generating Wiki con-

tent and by posting in the forum

From the combined dataset of 52,939 participating students, we assigned each

student into one of the four types. The following chart summarizes the sizes of the

cohort datasets.

Figure 2-5: Chart of the relative sizes of our cohorts

For all of the ensuing modelling and analysis, we treated and reported on each of

the cohort datasets independently.
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Chapter 3

Constructing Interpretive Features

After collecting the data and carefully defining the problem, we started constructing

sophisticated interpretive features (aka covariates) hypothesized to be predictive of

stopout. As previously mentioned, we split the course into 15 time slices (weeks).

Thus, for each defined feature, we assign each student a feature-value each week. For

example, each student has a value for the feature stopout for each of the 15 weeks.

The value is 0 if the student has already stopped out by not submitting any more

assignments, or it is 1 if the student will submit assignments in the future.

3.1 Feature origins

With the database, we then proceeded to write the scripts to extract the covariates

for our model. By analyzing the covariates we aimed to capture behavioral patterns

that could be indicative of loss of interest or loss of motivation among several others.

We approached this in three different ways:

• We brainstormed feature ideas as researchers. Next, we implemented our own

ideas by writing feature extraction scripts. We call these features self-proposed,

self-extracted.

• We asked others for ideas of what might be predictive of stopout. The people

we asked included students, teachers and external researchers. We refer to
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this group collectively as ‘the crowd.’ We identified ideas that we had not

implemented yet, and constructed feature extraction scripts ourselves. We call

these crowd-proposed, self-extracted.

• Finally, we asked ‘the crowd’ to brainstorm predictive features, and to send us

feature extraction scripts that we could run on MOOCdb. We provided people

with a mock dataset with an identical data schema. Thus, instead of providing

actual student data, we empowered the crowd to join in our data science efforts.

We call the resulting features crowd-proposed, crowd-extracted.

3.1.1 self-proposed, self-extracted

Table 3.1 summarizes the features we brainstormed and extracted. Each feature is

calculated on a per student, per week basis. A * indicates that a disambiguating

explanation follows underneath.

• x2, x16, x17, x18: These features are based on observed event duration. The edX

server logs did not explicitly provide this, so we need to infer the duration based

on the timestamps of the start of observed events. We assume that a student

observed an event until he observed a different event (a new timestamp). This is

a similar approach used by industry web-profile metrics. Sometimes, the spacing

between observed events is very large, presumably because the user stopped

interacting with the website. This is handled by setting the last observed event’s

duration to a MAX DURATION. For example, if Student A had three observed

events with timestamps, T1, T2 and T3, the duration of the first event would

be T2 - T1, the duration of the second is T3 - T2, and the duration of the third

is MAX DURATION, since there is no T4. Additionally if T3 − T2 > 60, the

duration is set to MAX DURATION. In our case, we set MAX DURATION to

be 60 minutes, because our data included durations of up to ∼ 60 minutes.

• x5: A forum post’s length is the number of characters in the forum post (i.e.

the length of the string). We used MySQL’s length function.
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Name Definition
x1 stopout Whether the student has stopped out or not
*x2 total duration Total time spent on all resources
x3 number forum posts Number of forum posts
x4 number wiki edits Number of wiki edits
*x5 average length forum

post
Average length of forum posts

*x6 number distinct prob-
lems submitted

Number of distinct problems attempted

*x7 number submissions Number of submissions a

x8 number distinct prob-
lems correct

Number of distinct correct problems

x9 average number sub-
missions

Average number of submissions per problem (x7 / x6)

x10 observed event dura-
tion per correct prob-
lem

Ratio of total time spent to number of distinct correct
problems (x2 / x8). This is the inverse of the percent of
problems correct

x11 submissions per cor-
rect problem

Ratio of number of problems attempted to number of
distinct correct problems (x6 / x8)

x12 average time to solve
problem

Average time between first and last problem submissions
for each problem (average(max(submission.timestamp) -
min(submission.timestamp) for each problem in a week)
)

*x13 observed event vari-
ance

Variance of a student’s observed event timestamps

x14 number collaborations Total number of collaborations (x3 + x4)
x15 max observed event

duration
Duration of longest observed event

*x16 total lecture duration Total time spent on lecture resources
*x17 total book duration Total time spent on book resources
*x18 total wiki duration Total time spent on wiki resources

Table 3.1: List of self-proposed, self-extracted covariates

aIn our terminology, a submission corresponds to a problem attempt. In 6.002x, students could
submit multiple times to a single problem. We therefore differentiate between problems and sub-
missions.
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• x6, x7: With problem submissions, week number is ambiguous. Students may

submit a problem at any time (assuming the problem is released), regardless

of when the problem is due. In other words, even if a problem corresponds

to week number 3, a student could submit that problem in week 5. For these

features, we counted a submission in week w1 if the submission’s timestamp is

in w1, regardless of whether or not the problem is part of w1’s assigned content.

We chose to do this because the feature is meant to capture a student’s weekly

activity.

• x13: For this feature, we tried to measure the consistency of a student’s observed

event patterns relative to the time of day (i.e., a student who always works on

the course at 7:00 a.m. would have small variance for that week). To capture

event variance, for each day, we counted the number of seconds after midnight

of the observed event timestamp. We created a distribution of all of the number

of seconds for each student each week. Then, we calculated the variance of the

distribution (each student, week pair has it’s own distribution). This variance

becomes the feature. Note: student’s participate from around the world, but the

timestamp is in UTC time. However, because variance is valued over absolute

value, the actual time is irrelevant.

3.1.2 crowd-proposed, self-extracted

Table 3.2 summarizes the features the crowd hypothesized, but we extracted. Each

feature is calculated on a per student, per week basis. A * indicates that a disam-

biguating explanation follows underneath.

• x202, x203: For each week, we create a distribution of all of the values for every

student of feature x9. Then, we compare a student’s x9 value to the distribution

for that week. x202 is the percentile over that distribution, and x203 is the percent

as compared to the max of the distribution.

• x204, x206: As mentioned earlier, with regard to submissions, there is an ambi-

guity: whether a submission correspond to the week in which it was submitted,

38



Name Definition
x201 number forum re-

sponses
Number of forum responses

*x202 average number of
submissions percentile

A student’s average number of submissions (feature 9) as
compared with other students that week as a percentile

*x203 average number of
submissions percent

A student’s average number of submissions (feature 9)
as a percent of the maximum average number of sub-
missions that week

*x204 pset grade Number of the week’s homework problems answered cor-
rectly / number of that week’s homework problems

x205 pset grade over time Difference in grade between current pset grade and av-
erage of student’s past pset grade

*x206 lab grade Number of the week’s lab problems answered correctly
/ number of that week’s lab problems

x207 lab grade over time Difference in grade between current lab grade and aver-
age of student’s past lab grade

x208 number submissions
correct

Number of correct submissions

x209 correct submissions
percent

Percentage of the total submissions that were correct
(x208 / x7)

*x210 average predeadline
submission time

Average time between a problem submission and prob-
lem due date over each submission that week

Table 3.2: List of crowd-proposed, self-extracted covariates
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or the week in which the problem’s module was. These features are meant to

capture the grade on the module. Therefore, they are computed based on the

week’s homework assignment and lab assignment, rather than on the submis-

sion timestamp. The number of problems the student answered correctly out

of the total number of homework or lab problems corresponding to that week

constitute features x204 and x206.

• x210: For each submission during the week, the time difference between the

submission timestamp and the due date of the problem is calculated. x210 is

the average of all of these differences.

3.1.3 crowd-proposed, crowd-extracted

In an attempt to crowdsource feature extraction, we asked SQL-fluent MIT students

and researchers to both hypothesize new features and submit scripts which would

extract them. We are still in the process of collecting feature scripts from this effort

at the time of writing. Unfortunately, due to an empty field in MOOCdb, we were

unable to extract and use several features we have already received. We plan to

continue this effort in the future.

3.2 Complexity of extracted features

Efforts have been made by others to construct features to describe student behavior

in MOOCs. For example, Balakrishnan constructed 5 basic features, two of which,

stopout and the number of forum posts (x1 and x3), we independently used [1]. Those

5 features are basic in the fact that they rely solely on one of the data sources re-

ceived from MOOC platforms, and only count the number of times an event occurs.

However, our extraction effort is the first instance, to our knowledge, that an ex-

tensive, sophisticated feature-set has been constructed on MOOC behavioral data.

Firstly, our 28 features are more sophisticated in the variety of sources used in their

construction, such as the leveraged crowd-sourced brainstorming used to capture cre-
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ative behavioral features. In addition, many involve complexities beyond a simple

count per week. Such complexities include:

• Higher level statistical features. For example, the variance of the times of day

that a student accesses course material each week (x13) and the percentile of a

students average number of submissions (x202) use statistical metrics about a

students behavior.

• Manual curation of features. Some features require manual curation in order to

get a descriptive metric. For example, x204, a students pset grade, necessitated

manual curation of problem and assignment deadlines.

• Multiple data sources and MOOCdb modes. Some features included information

from multiple sources (such as x204, the pset grade). This included getting

deadlines for the problems from the XML file, all submissions from the server

logs, and the problems correctness from the production MySQL dump.

• Combination features. For example, x10 represents the amount of time a student

spends on the course (x2) per correct problem (x8). This feature captures the

less tangible gratification a student experiences based on time spent.

3.3 Statistical Analysis

After constructing MySQL feature extraction scripts to run on MOOCdb 1 , we ran

each across all students in the 6.002x MOOCdb. This database contained 105,621

students who had some interaction with the class. Running the scripts took several

days, as a few of the scripts scanned the entire click-stream observed events table for

a student, which contains more than 132M entries.

After extracting our interpretive features, we created a csv dataset with all of

the information. This csv file contained the value for all 28 features for 105,621

students across 15 weeks. Each row in the file contained the feature values for specific

1The software has been prepared to be released with this thesis.
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student week, and each column contained the feature values for a specific feature.

Thus, we had a (num students * num weeks) X num features or 1,584,315 X 28 csv

file.

Although MOOCdb contained 105,621 students, many never participated in sub-

mitting problems. Thus, based on our prior definition of stopout, these students had

already stopped out by the first week. We removed these students from the dataset.

The resulting dataset contained 52,939 students, roughly half of the original. Each

of these students participated in submitting problems for at least one week of the

course.

Figure 3-1: The distribution of feature values for x2 through x10

Figures 3-1 through 3-3 shows the distribution of feature values over every student

week where the student was not stopped out. Note that the majority of feature values

are 0s. This means there are many weeks where a student did not interact with the

course at all, or only interacted with limited course components (for example, never
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Figure 3-2: The distribution of feature values for x11 through x201

posted on the forum but watched lectures, or only watched lectures but did not

submit). Most features are heavily skewed to the right.

3.4 Principal Component Analysis

We performed a dimensionality reduction technique called principal component anal-

ysis to transform our extracted features into a basis of lower dimensionality. This

technique finds the dimension of the data with the largest variance, and uses this as

the first basis dimension. The second basis dimension is the dimension orthogonal to

the first which has the largest variance. This process is completed until a full basis is

found. The first X dimensions that cover 95% of the variance are used to transform

the features. We use the transformed features as a new dataset. This process not only

reduces the dimensionality, but is useful for models that assume feature independence
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Figure 3-3: The distribution of feature values for x202 through x210

as the PCA features are orthogonal.

Principal component analysis reduced the passive collaborator and forum contrib-

utor cohorts from 28 features to 9 features. PCA transformed the fully collaborative

cohort into 13 features. We were unable to perform PCA on the wiki contributor

cohort because there were too few students.

3.5 Discretization of features

We discretized the extracted feature values as some of our predictive modelling train-

ing algorithms rely on discretized values for tractability. This process is also known

as binning. In order to best discretize a feature, we want to preserve as closely as

possibly the distribution of that feature. Inevitably, because we have a smaller range

of values than the feature can take, we will lose information when we bin the features,

44



but a good discretization preserves as much information as possible. A simple way to

bin a continuously valued feature is to use equal sized bins, which works well when

the distribution is roughly equally distributed. However, after analyzing our distri-

butions, we realized that our distribution for most features is heavily skewed towards

0. We used a binning strategy that picked binning cutoffs in order to create an equal

frequency of samples in each bin. This strategy, as closely as possible, will preserve

the original distribution. We attempted binning with 5 bins and 10 bins. After the

binning, we analyzed the distribution of each discretized feature in comparison with

the continuous distribution. With just 5 bins, we were able to get almost equal bin

frequencies. (see Figures 3-4 through 3-6). Since the distribution roughly captured

the entropy, we decided to use 5 bins. Additionally, we knew from prior experiments

that a smaller number of bins significantly reduced training and inference times for

dynamic Bayesian networks.

Figure 3-4: The distribution of binned feature values for x2 through x10
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Figure 3-5: The distribution of binned feature values for x11 through x201
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Figure 3-6: The distribution of binned feature values for x202 through x210
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Chapter 4

Model Evaluation

In working with prediction problems, such as stopout prediction, there are many

ways to evaluate how well a classifier (a.k.a. model) performs. In this chapter, we

will briefly summarize the evaluation possibilities for a binary classification problem,

and discuss why we chose the receiver operating characteristic as our primary metric.

4.1 Point metrics for hard decision outputs

When a classifier produces a hard decision output, i.e. a binary label, we evaluate

the classifier using the following metrics.

4.1.1 Confusion Matrices

Generally, the evaluation measures in classification problems form a matrix with the

numbers of examples correctly and incorrectly classified for each class, named the

confusion matrix. The confusion matrix for a binary classification problem (which

has only two classes - positive and negative), is defined by correct and incorrect

classifications of positive and negative values. In our case, because we hope to predict

stopout, a positive example represents stopout, and a negative example represents

staying in the course. Table 4.1 shows the confusion matrix.
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actual
value

Prediction outcome

stopout persist

stopout True
Positive

False
Negative

persist False
Positive

True
Negative

Table 4.1: Dropout Prediction Confusion Matrix

• True Positives (TP) are students who we correctly predict as stopping out.

• False Positives (FP) are students who we predict will stopout, but who stay in

the course.

• False Negatives (FN) are students who we predict will stay in the course, but

who actually stopout.

• True Negatives (TN) are students who we correctly predict as staying in the

course.

4.1.2 Prediction Accuracy

The simplest evaluation metric is prediction accuracy, which represents how often

the classifier correctly predicted an example. A classifier’s accuracy is given by

TN+TP
FN+FP+TN+TP

Prediction accuracy can be applied to any classifier.

When the dataset is skewed towards one label or another, this becomes problem-

atic because the optimal threshold to maximize accuracy favors the more likely label,

and the classifier is able to achieve good accuracy by always guessing the more likely

choice. This is the case in our dataset, as in any given week, more students stay

in the class next week than stopout. If, for example, we are trying to predict one

week ahead, and 90% of students are still in the class next week, then a classifier

can achieve 90% accuracy by simply always predicting that a student will stay in. In
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addition to this problem, prediction accuracy loses information about the certainty

of the answer, as it only outputs the label. For these reasons, prediction accuracy is

not the primary metric we use to evaluate our models.

4.1.3 Precision and Recall

In a classification context, precision and recall are additional metrics for how well

a classifier performs. Both are defined through equations relating confusion matrix

values. Precision is given by TP
TP+FP

. Intuitively, precision represents the accuracy of

the classifier among those it classifies as positive examples. In our case, this becomes

the fraction of students who were predicted to stopout and actually did leave the

course. Recall is given by TP
TP+FN

. Intuitively, recall represents how good a classifier

is at finding positive examples. In the stopout problem, recall represents the number

of stopped out students the classifier is able to identify. A classifier with low recall

allows many stopout students to fall through the cracks and escape detection.

For classifiers (such as logistic regression and Hidden Markov Models, classifiers

which we use) that give the probability of being in each class, prediction accuracy

and the precision recall point require picking a threshold to compare against. For

example, for a threshold of 0.7, a classifier could predict that a student will stay in

the course if the probability of staying is greater than 0.7. For this reason, this type

of metric is called a point metric, or hard decision classification.

4.2 Area metrics for soft decisions

A more comprehensive metric to evaluate classifiers uses every threshold for evalua-

tion. Models that generate a posterior probability estimate for a label are able to do

this. An example of an area metric is the precision-recall curve.
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4.2.1 Precision-recall curve

Although precision and recall are defined by a confusion matrix, in practice they

are often represented as possible precision and recall scores as a classifier sweeps

through threshold values. Of course, this sweeping only applies to classifiers which

give a probability of being in each class. This produces a precision-recall curve, which

graphs possible precision values vs. possible recall values during this threshold sweep.

Figure 4-1 shows an example curve. Each point on the curve represents a threshold.

The AUC, or area under the curve, is a simple, one-number metric which represents

how well the classifier performs over all thresholds. The precision-recall curve is

commonly used in evaluating predictive models.

Figure 4-1: Example precision-recall curve. The curve was generated using logistic
regression on the forum only dataset, with a lead of 3 and a lag of 4. This model will
be discussed later, but serves here as an example.
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4.2.2 Receiver Operating Characteristic

Another widely used metric of classifier performance is called the receiver operating

characteristic. Like the precision-recall curve, the receiving operating characteristic,

or ROC, is a line representing the performance as a classifier sweeps a range of thresh-

olds of decision boundaries. Figure 4-2 shows an example ROC curve. The ROC curve

represents the range of possible probability of False Alarm and probability of Detec-

tion values. Both probability of False Alarm (pFA) and probability of Detection (pD)

are given by confusion matrix quantities. pD is equal to TP
TP+FN

. This is equivalent

to recall, and represents how good a classifier is at finding positive examples. pFA

is equal to FP
FP+TN

. This represents how likely a classifier is to mistakenly classify a

negative example as a positive one.

Figure 4-2: Example ROC curve. The curve was generated using logistic regression
on the forum only dataset, with a lead of 3 and a lag of 4. This model will be discussed
later, but serves here as an example.
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Like precision and recall, a receiver operating characteristic is useful because it

describes a classifier’s ability over a wide range of thresholds. Indeed, both are very

similar, and in a way equivalently useful for describing a classifier. Which curve to use

depends on which value is more important in a prediction problem, which is usually

context specific. We choose to use the receiver operating characteristic.

The integral of the ROC curve produces a one-number metric called the area under

the curve (AUC). Like the AUC of precision-recall, it concisely describes a classifier,

and is the primary metric we use as we compare predictive models. As previously

noted, a lot of information is packed into this one number, and thus is a convenient

summary of the effectiveness of the model.

4.3 Training and Testing

In order to independently construct and evaluate our models, we divided each cohort’s

dataset into a mutually exclusive train dataset and test dataset. We chose a 70% train,

30% test split, meaning that 70% of each cohort’s data was put into a train dataset,

and the remaining was put into a test dataset. In each of our predictive models, we

only used the train dataset to build the model, and ultimately evaluated it (using

the aforementioned receiver operating characteristic metrics) on the test dataset to

determine the model’s performance. The test dataset represent previously unknown,

sampled data from the population of students, and was never used until the final

evaluation of the models.

In order to preserve the distribution of students as best as possible, we aimed to

keep the 70/30 split for each stopout week for each cohort. In other words, for each

cohort, we split the students who stopped out in week 1 70/30, then split students who

stopped out in week 2 70/30, and so on, for each stopout week. In order to achieve

that split, we iterated through the overall file, and put students into the appropriate

dataset as they appeared so as to constantly keep the 70/30 split over each student.

We did so in this way as to not bias the split from the ordering of our file. In other

words, neither the train nor test split has a bias towards students who registered for
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the class earlier. The results are training and testing datasets for each cohort, each

of which are proportional to the aggregate cohort in terms of the stopout weeks of

the students and student registration times.

4.4 Cross validation

We employed a technique called cross validation in all of our predictive modelling.

Cross validation tests a predictive model without the test dataset, in order to gauge

when a model might be over-fitting, and to gauge sensitivity in model accuracy from

data sensitivity. Some partitions are used in constructing a model, and others are used

to evaluate the model’s performance. Specifically, we used K-fold cross validation.

K-fold cross validation is a commonly used technique which randomly divides the

dataset into K folds (or partitions). Cross validation then constructs K models.

Each model is constructed using K-1 of the folds, and the model is evaluated using

the last unused fold. Figure 4-3 shows a diagram of this. K-fold cross validation

helps to protect against over-fitting, and provides an alternative and complimentary

evaluation metric to the test dataset. Cross validation, and K-fold cross validation

are commonly used in practice. In our evaluations, we employ 10 fold cross validation

and use the average of the ROC AUC over the folds as another evaluation metric.
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Figure 4-3: The k-fold cross validation partitioning. K models are built, using K-1
folds for model construction and the last fold for model evaluation
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Chapter 5

Discriminative Models to Predict

Stopout

In the Chapter 3 we presented the feature extraction process, where a feature repre-

sents student behavior on a weekly basis. There are m features per student, which

we assemble as shown in the figure below:

x1 x2	   xm	  
w1	  
w2	  

w13	  

w14	  

W
eeks	  	  

S	  

Figure 5-1: The feature matrix, which captures each feature value for each week.
Each student has such a matrix.

To illustrate the predictive model’s potential application, we will use a realistic

scenario. The model user, likely an instructor or platform provider, could use the data

from week 1 to week i (current week) to make predictions. The model will predict

existing student stopout during weeks i + 1 to 14. For example, Figure 5-2 shows

one such prediction problem. In this case the user, currently at the end of week 3, is
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attempting to predict stopout for the 8th week.

Figure 5-2: Diagram of the student’s weeks data used in a lead 5, lag 3 prediction
problem

x1 x2	   xm	  
w1	  
w2	  

w13	  

w14	  

W
eeks	  	  

S	   x1	   x2	   xm	   x1	   x2	   xm	  

Week	  1	   Week	  2	  

L	  

Figure 5-3: Diagram of the flattening process. In this case two weeks of data is
used to predict week 13. This prediction problem corresponds to a lead of 11, and a
lag of 2.

Multiple prediction problems Under this definition 91 individual prediction

problems exist. For any given week i there are 14 − i number of prediction prob-

lems. Each prediction problem becomes an independent modeling problem which

requires a discriminative model. To build discriminative models we utilize a common

approach of flattening out the data, that is forming the covariates for the discrim-

inative model by assembling the features from different student-weeks as separate
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variables. This process is shown in Figure 5-3. The example uses data from weeks 1

and 2 (lag of 2) and attempts to predict the stopout for week 13 (lead of 11).

In this chapter, we present a logistic regression method for building several predic-

tive models. In each of the following sections, we present a model, its advantages and

how it is learned. Furthermore, we present a logistic regression variant called random-

ized logistic regression which we employ to identify feature importance. In Chapter 8

we present results from numerous other approaches for discriminative modeling.

5.1 Logistic Regression

Logistic regression is a commonly used binary predictive model. It calculates a

weighted average of a set of variables, submitted as covariates, as an input to the

logit function. Thus, the input to the logit function, z, takes the following form:

z = β0 + β1 ∗ x1 + β2 ∗ x2 + ...βm ∗ xm (5.1)

Here, β1 to βm are the coefficients for the feature values, x1 to xm. β0 is a constant.

The logit function, given by,

y =
1

1 + e−z
(5.2)

takes the shape as shown in figure 5-4. Note that the function’s range is between 0

and 1, which is optimal for probability. Also note that it tends to ‘smooth out’ at

extreme input value, as the range is capped.

For a binary classification problem, such as ours, the output of the logit func-

tion becomes the estimated probability of a positive training example. These feature

weights, or coefficients, are similar to the coefficients in linear regression. The differ-

ence is that the output ranges between 0 and 1 due to the logit function, rather than

an arbitrary range for linear regression.
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Figure 5-4: The logit (aka logistic or sigmoid) function. The logit equation is
y = 1

1+e−x . The range of the function is between 0 and 1.

5.1.1 Learning

The objective of training a logistic regression model is to find a set of coefficients well

suited to fit the data. For the binary classification problem, as noted before, training

involves passing a set of covariates and a corresponding binary label associated with

the covariates. After training a model, the predicted probability, or the output of the

logit function, should predict higher probabilities for the positive ‘+1’ class examples

in the training data and a lower probability for the negative ‘0’ class examples.

There is no closed form solution to find the optimal coefficients to best fit the

training data. As a result, training is usually done iteratively through a technique

called maximum likelihood estimation [5]. First, a random set of coefficients are cho-

sen. At each iteration, an algorithm such as Newton’s method is used to find the

gradient between what the coefficients predict and what they should predict, and up-

dates the weights accordingly. The process repeats until the change in the coefficients

is sufficiently small. This is called convergence. After running this iterative process

over all of the training examples, the coefficients represent the final trained model.
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5.1.2 Inference and evaluation

With training in place, the next step is evaluating the classifier’s performance. A

testing set comprised of untrained covariates and labels evaluates the performance of

the model on the test data following the steps below:

Step 1: The logistic function learned and presented in 5.2 is applied to each data

point and the estimated probability of a positive label yi is produced for each.

Step 2: A decision rule is applied to determine the class label for each probability

estimate yi. The decision rule is given by:

L̂i =

{
1, if yi ≥ λ

0, if yi < λ

}
(5.3)

Given the estimated labels for each data point L̂i and the true labels Li we

can calculate the confusion matrix, true positives and false positives and thus

obtain an operating point on the ROC curve.

Step 3: By varying the threshold λ in 5.3 the decision rule above we can evaluate

multiple points on the ROC curve. We then evaluate the area under the curve

and report that as the performance of the classifier on the test data.

Predictive accuracy heat map To present the results for multiple prediction

problems for different weeks simultaneously, as discussed in Section 5, we assemble

a heat map of a lower right triangular matrix as shown in Figure 5-5. The number

on the x-axis is the week for which predictions are made of that experiment. The

y-axis represents the lag, or the number of weeks of data used to predict. The

color represents the area under the curve for the ROC that the model achieved.

Note that as the predicted week increases for a given lag, it is harder to predict.

Likewise, as we increase the lag for a given prediction week, the stopout value becomes

easier to predict. This implies that using more historical information enables a better

prediction.
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Figure 5-5: Example heatmap for a logistic regression problem. The heatmap shows
how the ROC AUC varied as lag changed as the target prediction week changed.

5.1.3 Attractive properties of logistic regression

• It is relatively simple to understand.

• After a model is trained, it provides feature weights, which are useful in assessing

the predictive power of features (this will be discussed further in our treatment

of the randomized logistic regression model).

• It is fast to run. On a single i-7 core machine, for example, running each of the

91 prediction problems on all 4 cohorts took 25 hours.

5.2 Predicting stopout with logistic regression

We applied logistic regression to student persistence prediction. We used the 27 inter-

pretive features as described in Chapter 3 to form the feature vectors, and maintained

the stopout value as the label. We used the features themselves, rather than the PCA

features so as to analyze predictor importance.

62



5.2.1 Experimental setup

To perform logistic regression analysis, we executed the ensuing steps for every lead,

lag and cohort combination 1:

1. Performed 10 fold cross validation on the training set. As outlined in the eval-

uation chapter, this involved training the model on 9 folds of the train dataset

and testing on the last fold.

2. Trained a logistic regression model on the entire train dataset.

3. Applied the model to the test dataset by putting each data point through the

model then applying the decision rule in 5.3 and following the steps in 5.1.2

to determine the AUC under the ROC.

4. Evaluating the model using mean cross validation ROC AUC and test set ROC

AUC.

5.2.2 Experimental results

Figures 5-6 through 5-9 summarize the AUC of the receiver operating characteristic

for all four cohorts over each lead and lag combination. Overall, logistic regression

predicted dropout with very high accuracy. Some experiments, such as a lag of 7,

predicting week 8 in the fully collaborative cohort achieved accuracies as high as

0.95, a fantastic result (Figure 5-8). Moreover, the entire diagonal of the passive

collaborator cohort’s heatmap (Figure 5-6) resulted in an AUC greater than 0.88.

This diagonal represents experiments with a lead of one. Thus, we can surmise that

the extracted features are highly capable of predicting stopout, especially when the

prediction week is fairly near the lag week.

Across all experiments, the predictive models of the passive collaborator cohort

achieved the highest predictive accuracies. This is because passive collaborator is by

1 We used the logistic regression implementation of an open source machine learning library,
called scikit-learn. We chose this library because it is well known and tested, fast (the core maximum
likelihood estimation algorithm is written in C), with an easy to use python interface. In addition,
the scikit-learn library includes an easy interface for cross validation and feature normalization.

63



far the largest cohort, which resulted in high performing, stable accuracy for all 91

experiments. Conversely, the wiki contributor cohort performed terribly for many

experiments. In fact, for some lag and predicted week combinations, the model could

not even compute an AUC because there were not enough examples to test on.

Figure 5-6: Logistic regression results for the passive collaborator cohort.

What follows is a deeper explanation of two interesting prediction problems and

their results.

Are there early signs of stopout? One extremely interesting prediction problem

is trying to predict student persistence into the last week of the course using a single

week of data. Practically speaking, this would enable platform providers and instruc-

tors to predict which students would finish the course by the end of the first week.

Potentially, this would allow instructors to interpret the reason for student stopout

as motivational (such as just browsing) rather than course-specific reasons (such as
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Figure 5-7: Logistic regression results for the forum contributor cohort.

the content becoming too difficult), because the students have not been exposed to

much content yet. Furthermore, early-sign stopout prediction could allow courses to

target certain types of students for some type of intervention or special content. If

our models are successful, the results would imply that our extracted features are

capturing a student’s persistence far in advance. Remarkably across cohorts, the gen-

erated models achieved an AUC of at least 0.64, and reached as high as 0.78 in the

case of the wiki contributor cohort.

The wiki contributor AUC of 0.78, or even the passive collaborator of 0.7 suggests

it is possible to roughly estimate which students will finish the course. Implications

include the ability to reach out to students likely to stop the course before they

become disengaged, or giving a professor a rough indication of how many students to

expect each week. If these predictions hold true for other courses, a prediction model

could be used to measure the success of course experiments, such as changing course
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Figure 5-8: Logistic regression results for the fully collaborative cohort.

content.

In the case of the wiki contributor cohort, the model performed well for most

later predictive weeks given a lag of one. This indicates two things. Firstly, wiki

contributor students show remarkably high early signs of persistence. Secondly, given

more students, predictive models of the wiki contributor cohort would likely perform

well. Owing largely to the small pool size of the wiki contributor cohort, model

performance suffered, especially as lag increased, because there were not enough stu-

dents to appropriately train on. However, with a lead of one, the models used more

student’s data because we included all students who started in the course.

The prediction spike after the midterm Leading up to the midterm (in week

8), making predictions using a lag of i, where i is the current week, yields a fairly

consistent AUC. In other words, students who will stopout after the midterm resemble
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Figure 5-9: Logistic regression results for the wiki contributor cohort.

their persistent counterparts up until week 8. However, using lag 8 instead of 7,

thereby including midterm data, produces an upward prediction spike in all four

cohorts.

Perhaps the most striking spike example is in the most consistent cohort, the

passive collaborator students. If the model attempts to predict using a only lag 7, it

realizes an AUC of 0.75. If the model expands to include midterm week data from

week 8 and attempts to predict who will be in the course the next week, it achieves

an AUC of 0.91! This is a significant spike. Similarly, the fully collaborative cohort

increases AUC significantly from 0.68 in week 7 to 0.81 in week 8.

With the addition of the midterm week data the model is equipped to make

reasonably consistent predictions through the end of the course. In fact, for the two

cohorts of significant size, the region including and beyond week 8 achieves the highest

AUCs of the entire course. This suggests that the midterm exam is a significant
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milestone for stopout prediction. It follows that most students who complete the

midterm finish the course. For the two smaller cohorts, wiki contributor and fully

collaborative, the region beyond week 8 realizes terrible predictive power because too

few students remain in the course to accurately train on.

5.3 Randomized Logistic Regression

Another use of logistic regression is to assess the importance of features. Our model

analyzes 27 features to model stopout. In order to best fit a training set, the model

optimizes weights for each feature (outlined in the logistic regression section). By

weighting the features we gain a sense of how predictive each feature is. However,

the logistic regression model misses the mark if two variables are highly predictive,

yet very correlated, because it will only select one. The unselected feature will ap-

pear to have a low coefficient. To work around single feature selection we perform

Randomized logistic regression which works as follows:

Step 1: Sample without replacement 75% of the training data each time.

Step 2: Train a logistic regression model on the sub-sampled data (with regulariza-

tion).

Step 3: For every feature evaluate bis = µ(wi, th) where µ is a unit step function and

wi is the coefficients for covariate i and th is the threshold we set to deem the

feature important. This is set at 0.25.

Step 4: Repeat Steps 1, 2 and 3 a total of 200 times.

Step 5: Estimate the importance of the covariate i by
∑

s b
i
s.

We applied randomized logistic regression to the stopout prediction problem using

the exact same process as we did in logistic regression (e.g. flattening a feature set

using lead and lag values etc.) This technique is also referred to as stability selection

[4].
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5.3.1 Experimental setup

We ran randomized logistic regression for every lead, lag and cohort combination.

For each experiment, randomized logistic regression resulted in a vector of covariates

weights. Each weight ranged from 0 to 1. 2

5.3.2 Experimental results

Randomized logistic regression analysis gave us fascinating covariate weight vectors

for all 91 experiments and all cohorts. For each experiment the randomized logistic

regression gives us weights for all the covariates which are student features for different

weeks. In order to gain a more quantitative grasp of which features matter, as well

as which week’s data mattered for different prediction problem, we performed two

different types of aggregations.

Week invariant feature importance To calculate the importance of a feature,

we first evaluate its importance in each of the 91 experiments. We sum the weights

associated with it across different weeks, then divide it with the sum of all weights for

that experiment. This gives its weight relative to every other feature in that particular

experiment. We illustrate this procedure for evaluating feature 1’s importance in an

experiment where the lag=3 in Figure 5-10. After quantifying importance for the

feature of each experiment, we average the number to get the week-invariant feature

importance. Figures 5-11 to 5-14 summarize these normalized average feature weights.

The first thing that struck us as we looked at these plots was the difference in

feature weights between the self-proposed features and the crowd-proposed features.

In all four cohorts, the majority of the weight lies in the crowd-proposed features

3.1.2 (x201 through x210)! Clearly, the crowd can be utilized to a great degree. As

features mostly represent high level constructs, such as the percentiles (x202 and x203),

these plots suggest that those types of features have a very high predictive power.

Additionally, they mostly involve the submissions table in MOOCdb. This includes

2We used the scikit-learn Randomized Logistic Regression implementation.
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Features 1- 27  Features 1- 27  Features 1- 27  

Week 1 Week 2 Week 3 

+ + 
Sum of all weights  

wf1i = 

Figure 5-10: Aggregating feature 1’s weights to assemble relative feature importance
for a single experiment. In this example, the lag is 3. Three weeks data is used to
predict a stopout in a future week. The Randomized logistic regression gives the
weights for all 27 features for all three weeks (unnormalized). To assemble the week
invariance relative weight for feature 1 we sum the weights and divide it with the
total weights. We note that this is a heuristic.

Figure 5-11: Feature importances for the passive collaborator cohort.

the lab grade (x206), pset grade (x207) and predeadline submission time (x210)).

In the passive collaborator cohort, the feature most indicative of stopout is the av-

erage predeadline submission time. The forum contributor cohort looks very similar,

but uses a broader spectrum of features. In particular, we see that x5, the average

length of forum posts, is also highly predictive (of course, this could not have shown

up in the passive collaborator cohort, as by definition those students do not partici-

pate in the forum). Interestingly, we see a very low predictive power from the number

of forum posts(x3) and the number of forum replies (x201), despite the fact that the
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length of the forum post is very important. This could imply that longer posts are

indicative of more engagement in the course, or a greater mastery of the material.

Figure 5-12: Feature importances for the forum contributor cohort.

In the both of our smaller cohorts, fully collaborative and wiki contributor, the

lab grade (x206) and lab grade over time (x207) are the most predictive features.

Although both of these cohorts participated in the Wiki, the number of Wiki edits

(x4) actually contains insignificantly small predictive power in both cases. Both

cohorts show similar distributions overall. Similar to the larger cohorts, features

related to submissions hold the most predictive power.

Feature invariant week importance For any given lag (that is data from weeks

1-to-lag) we wanted to assess which of the week’s features (data) are important for

a prediction problem. We call this feature-invariant week importance. To evaluate

this, we first group the experiments by lag, then for each experiment aggregate the

weights for features for each week. We then normalized this value with the total sum

of weights. This provided us the relative normalized importance of that week in that

experiment. We illustrate this process in Figure 5-15. We then repeat this for all the

experiments with the same lag and then sum the normalized importances for a week

and plot this sum for each lag in the heatmap as shown in the Figure 5-16.
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Figure 5-13: Feature importances for the fully collaborative cohort.

Figure 5-14: Feature importances for the wiki contributor cohort.

As might be expected, most feature vectors used only more recent weeks of data

in order to predict. For example, for the passive collaborator cohort, for a lag of 8,

predicted week of 11, the majority of the first 6 weeks of data have no feature weight,

and the nonzero weights are all below 0.15, whereas features of week 10 include weights

as large as 0.965 (for x11). Figures 5-16 through 5-19 show a heatmap of these results.
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Features 1- 27  Features 1- 27  Features 1- 27  

Week 1 Week 2 Week 3 

+ + 
Sum of all weights  

wf1i = 

Figure 5-15: Aggregating different weeks weights to assemble weeks relative impor-
tance for a single experiment for a given lag. In this example, the lag is 3. That is,
three weeks data is used to predict a stopout in a future week. The Randomized logis-
tic regression gives the weights for all 27 features for all three weeks (unnormalized).
To assemble the feature-invariant relative weight for week 1 we sum the weights for
all features in week 1 and divide it with the total weights. We note that this is a
heuristic.

Figure 5-16: Feature week’s importance as lag varies for the passive collaborator
cohort.

As expected, for each lag, the week’s features that mattered the most are the

final weeks. This quickly drops off. For each cohort, the logistic regression models

use approximately the last four weeks of data, regardless of the lag. This indicates

that there is not much added value in using more than four weeks of data as the lag
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Figure 5-17: Feature week’s importance as lag varies for the forum contributor
cohort.

increases. This information would be useful when prediction must be done quickly,

such as in real-time analytics.
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Figure 5-18: Feature week’s importance as lag varies for the fully collaborative
cohort.
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Figure 5-19: Feature week’s importance as lag varies for the wiki contributor cohort.
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Chapter 6

Temporal Models of Student

Behavior

In the previous chapter we presented a flat discriminative model to be able to predict

stopout. In this chapter we present a methodology to model a student’s data tempo-

rally. We posit that while taking a course a student has a latent state that represents

a summary of his engagement and interest in the course during a particular week i.

The features that we evaluated for the student for a week i represent a draw from a

multivariate distribution pertaining to that state. We posit that a student transitions

from one state to another state during the course as the course transitions from one

week to another. Using the data from multiple students our goal is to identify how

many unique states there are, how students transition from state i to state j and

what multivariate distribution of the features does each state represent?

One way to achieve this is to cluster all students weekly data which is 15 × N

number of data points. Next, extract every student’s cluster label on a weekly basis.

We can then learn the transitions between the cluster labels across all students. An

alternative approach presented in this chapter uses Hidden Markov Models (HMM)

to jointly identify the multivariate distributions that each state represents and the

transition probabilities between states.
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6.1 Hidden markov models for modeling student

behavior

Hidden markov models, or HMMs, are a powerful and highly used class of generative

models. HMMs are usually built to model time series data, such as stock prices.

They are a type of probabilistic graphical models in which the modeled entity is

assumed to transition from one latent state to another as discrete time steps progress.

However, this state is not directly observable, and thus is ‘hidden.’ HMMs suppose

that although the hidden state is not directly observable, the state relates to variables

that are observable probabilistically. More specifically, each hidden state corresponds

to a multivariate distribution for the observed variables from which they are most

likely sampled from given the hidden state. The most basic HMM has only one

observed variable (per time step), but the models we create contain 28 observed

variables, one per feature1. Figure 6-1 shows the graph structure of a typical HMM.

In the figure, Z (shaded node) represents a hidden node. The graphical form as shown

in the Figure 6-1 can be written as a joint distribution given by:

p(z1:T , x̄1:T ) = p(z1)
T∏
t=2

p(zt|zt−1)
T∏
t=2

p(x̄t|zt) (6.1)

In the most common case, independence is assumed among the observed variables

given the hidden variable, making the joint distribution:

p(z1:T , x̄1:T ) = p(z1)
T∏
t=2

p(zt|zt−1)
T∏
t=2

{
m∏
i=1

p(xit|zt)} (6.2)

The observed variables can be either continuous, or discrete. In the continuous

case, the distribution for observed variables is typically assumed to be independent

univariate Gaussian. In the discrete case, a multinomial distribution is used to rep-

resent the joint distribution between the hidden variable and the observed variable.

Note that, when using multinomial distribution, observed values are no longer ordi-

1Most software libraries only support one observed variable. This is because using multiple
observed variables is computationally complex
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nal, but are nominal, i.e., A is not greater or less than B, rather is simply not B.

To use this model when the variables are continuous the variables are binned using a

methodology that preserves the entropy of the univariate distribution for that variable

(presented in section 3.5).

Let us assume that the hidden variable takes one of the k values 1 . . . K and each

observed variable has 1 . . . P discrete values. The model is parametrically defined by

a K-by-K transition matrix and m, K-by-P emission matrices, one for each of the

observed variable given the hidden variable and a 1-by-K probability vector for the

initial state p(z1).

The entry i, j in the transition matrix shown below represents the probability

p(zt = i|zt−1 = j) and is given by:

Ai,j =



a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

...
...

. . .
...

ak,1 ak,2 · · · ak,k


(6.3)

and the emission matrix for pth observed variable is given by:

Ei,j =



e1,1 e1,2 · · · e1,p

e2,1 e2,2 · · · e2,k

...
...

. . .
...

ek,1 ek,2 · · · ek,p


(6.4)

The entry i, j in the emission matrix for variable m represents p(xmt = i|zt = j).

The objective of training an HMM is to find the optimal transition and emission

probabilities given the graphical structure.
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z z z 

Figure 6-1: A typical hidden markov model structure. Top figure shows a common
hidden markov model with only one variable. The bottom figure represents our case
where we have multiple observed variables per time slice.

6.1.1 Learning the probabilities of an HMM

A hidden markov model is typically constructed using the Baum-Welch algorithm.

Firstly, the initial states, transition matrices and emissions matrices are assigned

(usually randomly). In each iteration of Baum-Welch, a forward-backwards inference

algorithm is used to estimate the p(zt|x̄) for all t and for all sequences given the pa-

rameters. Subsequent to this estimation, the the emissions and transition matrices are

updated. As the parameters are updated, a log-likelihood score is evaluated to mea-

sure how well the model fits the data. In each iteration, the likelihood improves, and

will begin to converge on either a local or global maximum.The algorithm terminates

after the difference between log-likelihood of two consecutive iterations falls below

a threshold (implying convergence), or a maximum number of iterations is reached.

Through training, the model learns both the distributions of observed variables for

each state, and the probabilities of transitioning from one state to another.
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Figures 6-2 demonstrates how the observed variables are used as evidence in order

to train the HMM.

w1	   w2	   w13	   w14	  
Weeks	  	  

x
1  

x
2 	  

x
m 	  

D	  

x1	   xm	   x1	   xm	   xm	  x1	  

z	   z	   z	  

Figure 6-2: This figure shows how the student-week-matrix which has features that
represent the behavior of a student during a week is provided as evidence to the
hidden markov model training.

6.1.2 Inference

Once the HMM is built, we can utilize it to predict a future value of an observed

variable. In our case, we can predict the stopout variable for a future week. Figure

6-3 shows this use of an HMM as a prediction engine. An alternative inference goal

is to find the probabilities for each hidden state at a given future timestep. Inference

is performed using the forward-backwards algorithm.

6.1.3 Advantages and disadvantages of HMMs

• Hidden markov models are designed for time sequenced data. They allow for

repeating features across time sequences.

• HMMs hidden state provide some intuitive notion of clustering types of students
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z z z 
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t=1 t=2 t=14 

Figure 6-3: This figure shows how the HMM is used to predict value for an observed
variable in a future time slice. In this specific example evidence is provided to the
model through week 2 and a prediction is sought for the 14th week

by way of the hidden state. For example, if a model with a hidden support of

4 delivers fantastic predictive power, we could surmise that there are really 4

modes an entity can be in. Indeed, the emission probabilities of the hidden

states might provide insights about what the modes may represent. In the

stopout prediction problem, for example, the modes might represent different

levels of engagement in the course, and represent the true state of a student in

a given timestep. However, apart from such a scenario, HMMs often become a

black box predictive model. For example, there is no notion of feature weights.

• HMMs require a lot of computing power to train, and the training time grows

exponentially with the number of time sequences (this is offset through dynamic

programming techniques, but is still slow).

• Hidden markov models assume independence between the observed variables

given a hidden variable, which is often not the case (such as in our feature-set

which uses derived features). Training a more complicated graph is possible,
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but much more computationally intensive.

• The Baum-Welch algorithm can get stuck on local maxima of probabilities as

it converges.

6.2 Predicting stopout using HMMs

We trained hidden markov models with the objective of predicting student persistence.

We used the 28 (27 interpretive features + binary stopout feature) as described in

chapter 3 as the observed variables of the hidden state. We applied inference to the

trained models, asking the HMM to generate the probabilities of sampling the stopout

value for a future timestep.

Each experiment used a given lead as a parameter. For example, for a lead of 1,

we used features from week 1 to predict week 2, then features from 1 and 2 to predict

week 3, etc. Note that this prediction problem is subtly different from that of the

logistic regression. In logistic regression, we chose a lead and a lag, and predicted a

single week’s stopout value. Here, we choose a lead, and use every possible lag with

that lead in order to predict every week up until the end of the course. However,

as in logistic regression, we do not perform inference on weeks where the student is

already known to have stopped out.

Hidden markov models require several parameter choices. Because the correct

hidden support value is unknown in hidden markov models, we varied this parameter

to find an optimal value. We used a range of supports from 3 to 29, with a step size

of 2. We stopped at 29 for the sake of computing time. We used 100 iterations as the

maximum number of Baum-Welch iterations along with a log-likelihood differential

threshold of 0.0000001. Training stopped when one or the other was reached.
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6.2.1 Experimental setup

To build a predictive HMM, we did the following on every lead, hidden support and

cohort combination 2:

1. Performed 10 fold cross validation on the training set. In order to speed this

process up, we ran each in parallel using python’s Parallelization package.

2. Trained an HMM on the entire train dataset. To compensate for the fact that

HMMs often get stuck on local maxima as they train, we trained 10 models for

each experiment. We selected the best model to use based on the likelihood

score of the Baum-Welch algorithm. We also performed this in parallel, as

training can take significant amounts of time.

3. Performed inference on the test dataset by putting each data point through best

model. Specifically, we asked the model for the probabilities of each stopout

value for a given week. We compared the resulting probability of stopout versus

the truth stopout label.

4. Evaluating the model using mean cross-validation ROC AUC and test set ROC

AUC.

6.3 HMM results

Our hidden markov models performed well at predicting stopout. Overall, we saw

a fairly sharp decline in accuracy as the lead increased, especially as compared with

logistic regression. Similar to logistic regression, different cohorts achieved very dif-

ferent prediction accuracies as well.

2We first used a Matlab implementation of Dynamic Bayesian Networks in order to build HMMs.
This toolbox was flexible enough to construct arbitrary graphical structures, including HMMs. How-
ever, this toolkit proved too slow to use, even at scale. We switched to a custom built implementation
of hidden markov models. The code was written in C++ by two members in the ALFA group. It was
orders of magnitude faster, but provided a much cruder interface to use. After a lot of testing, and
benchmarking, we achieved as good of results as with the MATLAB implementation given a large
dataset, and with much faster time. Consequently, we recommend any sizable machine learning/data
science project to use C++
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Figure 6-4: Heatmap for the passive collaborator cohort. PCA transformations of
features used.

Figures 6-4 to 6-6 show HMM heatmaps for cohorts passive collaborator, forum

contributor and fully collaborative. These featuresets used PCA to reduce their di-

mensionality. We were unable to use PCA to reduce the wiki contributor cohort

because it was too small. Each heatmap visualizes the ROC AUC for various leads

as we vary K to create different models.

The PCA HMM models require a relatively larger K value in order to converge to

a high AUC. For the passive collaborator cohort, for example, we see that increasing

K continually increases AUCs for all leads, up through a K of 29. This suggests

that there are even more than 29 modes of students, and that we could attain even

better results through a higher K value. The PCA HMMs show a large contrast

between high leads and low leads. However, as compared with logistic regression,

we see more consistent results cross the cohorts. For example, with a lead of one,
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Figure 6-5: Heatmap for the forum contributor cohort. PCA transformations of
features used.

the passive collaborator, forum contributor and fully collaborative cohorts are within

0.08 of each other. In logistic regression, there is a difference in AUC of 0.2.

We suspect that the high difference in predictive accuracies between high leads

and low leads is due to the fact that HMMs use a single transition matrix for all weeks.

There is likely to be different probabilities of transferring hidden state between weeks

1 and 2 than between 12 and 13, for example, but the HMM posits only one set

of probabilities. Furthermore, since there are more students in earlier weeks due to

stopout, the transition matrix will have more examples from earlier weeks. Thus, it

will be biased towards the earlier weeks, allowing for better prediction in the earlier

weeks than in later weeks.

The following line graphs show how overall predictive accuracies of the PCA HMM

models change as K increases. These graphs indicate the correct number of hidden
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Figure 6-6: Heatmap for the fully collaborative cohort. PCA transformations of
features used.

states needed in order to model each cohort. See Figures 6-7 through 6-9. The mean

prediction AUC of all 91 experiments for logistic regression is also shown for each

cohort as a benchmark.

The results again indicate that the forum contributor and fully collaborative co-

horts seem to have converged, but not until K has reached 25. However, the passive

collaborator cohort’s mean AUC is still increasing as K goes to 29, indicating that a

higher K could better model this cohort.

Figures 6-10 to 6-13 show HMM heatmaps for all four cohorts using features that

did not undergo principal component analysis. Interestingly, they achieved much

different results than the HMMs with PCA. For example, Figure 6-10 performs con-

sistently better than its PCA counterpart. It converges more quickly- achieving near

optimal predictive power at K = 11. It outperforms PCA in nearly every experiment
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Figure 6-7: Mean AUC as K increases for the passive collaborator cohort. PCA
transformations of features used.

Figure 6-8: Mean AUC as K increases for the forum contributor cohort. PCA
transformations of features used.
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Figure 6-9: Mean AUC as K increases for the fully collaborative cohort. PCA
transformations of features used.

(given K greater than 9), and even attains an AUC of 0.9. This provides further

evidence that the PCA HMM did not converge, and it could achieve results as good

with a higher K.

However, for other cohorts, such as forum contributor, the PCA HMM 6-11 con-

sistently out-predicts the HMM without PCA. The PCA HMM achieves an AUC of

.78 for all K greater than 19 and lead of one, whereas its non-PCA HMM only hits

0.82. Similar differences exist in the fully collaborative cohort in 6-12. In both of

these cohorts, it appears that the PCA HMM used a high enough K to converge to

the correct number of modes of students.

One last difference between the non-PCA HMMs and the PCA HMMs is that the

non-PCA model’s predictive power degrades more gracefully as the lead increases.

This remains to be explained and requires more investigation.

In figures 6-14 through 6-17 we look at how the mean AUC changes as K in-

creases for the non-PCA HMMs. We see the AUCs converge much faster than the

PCA HMMs. In addition, the mean AUC comes closer to the benchmark logistic
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Figure 6-10: Heatmap for the passive collaborator cohort.

regression mean AUC. This is especially true for the smaller wiki contributor and

fully collaborative cohorts, on which logistic regression performs poorly due to a lack

of data. Indeed, the wiki contributor HMM outperforms its logistic regression coun-

terpart for almost all values of K.

At this point in the thesis, Chapter 5 has described models with logistic regression

and Chapter 6 with HMMs. HMMs rarely generated AUC results better than logistic

regression and were more predictively accurate when we used features not reduced by

PCA. Perhaps the best value derived from HMMs is the insight into a hidden state

and its support. In Chapter 7 attempt to leverage the hidden state unmasked by

HMMs can be used with logistic regression modelling to further extend prediction.
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Figure 6-11: Heatmap for the forum contributor cohort.
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Figure 6-12: Heatmap for the fully collaborative cohort.
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Figure 6-13: Heatmap for the wiki contributor cohort.

Figure 6-14: Mean AUC as K increases for the passive collaborator cohort.
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Figure 6-15: Mean AUC as K increases for the forum contributor cohort.

Figure 6-16: Mean AUC as K increases for the fully collaborative cohort.
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Figure 6-17: Mean AUC as K increases for the wiki contributor cohort.
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Chapter 7

Logistic Regression of the HMM

Hidden State Distribution

7.1 Background

A powerful way to use predictive models is to combine them. One possible way

to do so is to use a hidden markov model to infer the hidden state of an entity

each time slice, and then use the probability distribution outcomes of the hidden

state as features for another predictive model. Applying HMM inference gives the

probabilities at being in each hidden state for a given time-slice. These probabilities

are used as features for the next classifier. In this example, we use the hidden state

probability distribution as features for a time-slice, and apply logistic regression with

the resulting feature-vector. We call this model logistic regression on HMM state.

For example, let’s say that we want to apply logistic regression on the HMM

hidden state distribution for a hidden state support of 3, lag of 3 and lead of 5. To

perform inference on the HMM model, we would pass 3 weeks of data to the model,

and ask for the hidden state probability distribution for each of three weeks. Each

week would have a 3 element distribution (because there are 3 hidden states). Figure

7-1 shows a diagram of how the logistic regression feature vector is created. Only

two of these are relevant (because the 3 numbers always add to 1). Next, we would

take the first two probabilities from each of the 3 week’s distributions, and use these
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6 probabilities as a feature vector in logistic regression. The label of the data point

is the stopout value for week 8.

x1 xm+1 x1 xm+1 

z z 
L t=1 t=2 

p(z1) p(z2) p(z1) p(z2) 

covariates  Label   

w1 w2 w13 w14 

x
1  

x
2  

S  

Figure 7-1: Diagram showing how the logistic regression feature vector is created
using the HMM hidden state probabilities as features.

The intuition for why this might be a valid approach is that, in a way, the hidden

state is a less noisy description of the observed variables. For example, in the stopout

problem, the hidden state could represent the type of student, and the features are

simply noisy observations. Constructing an HMM thus creates a less noisy description

of the data.

7.2 Predicting stopout using logistic regression on

HMM state

We used the same parameters and software as in the individual models. This included

a range of supports from 3 to 29, with a step size of 2, a maximum number of Baum-

Welch iterations of 100, and a log-likelihood differential threshold of 0.0000001.
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7.2.1 Experimental setup

The process to construct such a model is more complex than the previous two models.

It entails the following, for each lead, lag and hidden support combination:

1. Split the train dataset into two equal partitions. I call the first ‘construct hmm’

and the second ‘generate features’. We partition the data in order to not pollute

the inference of the HMM with data it has been trained on.

2. Train an HMM on the ‘construct hmm’ partition. Similarly to the normal HMM

case, we trained 10 models to compensate for the potential to get stuck on a

local maximum. We selected the best model to use based on the likelihood score

of the Baum-Welch algorithm. We also performed this in parallel, as training

can take significant amounts of time. We train this HMM once for each support,

but use the same model for each lead and lag combination

3. Perform inference on the ‘generate features’ partition. We asked the model to

generate the hidden state probability distribution for each week in lag weeks,

and took K -1 of these probabilities for each lag week as features for the model

(where K is the hidden support). These feature vectors and labels become the

training dataset for logistic regression.

4. Perform 10 fold cross validation, using the generated training dataset.

5. Train a logistic regression model on the generated training dataset.

6. Perform inference on the actual test dataset by putting each data point through

the model and comparing the resulting probability of stopout versus the truth

stopout label.

7. Evaluate the model using mean cross-validation ROC AUC and test set ROC

AUC.
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7.3 Logistic regression on HMM state results

Figures 7-2 through 7-5 summarize the AUC of the receiver operating characteristic

for all four cohorts over each lead and lag combinations, similar to those in Chapter 5.

In order to compare, we choose the K with the best mean AUC for all 91 experiments.

The chosen mean is indicated.

Figure 7-2: Heatmap of the passive collaborator cohort. PCA transformations of
features used. The shown heatmap used a support of 27 for the HMM. This was the
support which yielded the highest mean AUC.

The HMM logistic regression models perform similarly to the logistic regression

models. Their AUCs are more polarized, however, due to the constant transition

matrix, as described in chapter 6. For short leads, HMM logistic regression out-

predicts logistic regression, but its performance decreases faster as the lead increases.

Figures 7-6 through 7-9 show how overall predictive accuracies of the HMM mod-

els change as K increases. The logistic regression mean AUC is also shown as a
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Figure 7-3: Heatmap of the forum contributor cohort. PCA transformations of
features used. The shown heatmap used a support of 21 for the HMM. This was the
support which yielded the highest mean AUC.

benchmark. The only cohort which outperforms logistic regression is fully collabora-

tive, presumably because HMM model is able to train with less students. All cohorts

except for wiki contributor converge around K of 21.
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Figure 7-4: Heatmap of the fully collaborative cohort. PCA transformations of
features used. The shown heatmap used a support of 19 for the HMM. This was the
support which yielded the highest mean AUC.
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Figure 7-5: Heatmap of the wiki contributor cohort. The shown heatmap used a
support of 7 for the HMM. This was the support which yielded the highest mean
AUC.
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Figure 7-6: Mean AUC as K increases for the passive collaborator cohort. PCA
transformations of features used.

Figure 7-7: Mean AUC as K increases for the forum contributor cohort. PCA
transformations of features used.
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Figure 7-8: Mean AUC as K increases for the fully collaborative cohort. PCA
transformations of features used.

Figure 7-9: Mean AUC as K increases for the wiki contributor cohort.
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Chapter 8

Discriminative Classifiers: Delphi

8.1 Background

Delphi is a first-ever shared machine learning service. It is a multi-algorithm, multi-

parameter self-optimizing machine learning system that attempts to automatically

find and generate the optimal discriminative model. A hybrid Bayesian and Multi-

armed Bandit optimization system works in a load balanced fashion to quickly deliver

results in the form of ready-to-predict models, confusion matrices, cross validation

accuracy, training timings, and average prediction times. Delphi works by creating a

very high dimensional search space of models and parameters. It navigates this space

by trying many different combinations, and gravitating towards models with better

results (in terms of prediction accuracy). It was built by an M.Eng. student in the

ALFA group. Delphi uses a wide array of classification algorithms, most of which are

implementations from scikit-learn. The explanations for each are outside the scope

of this thesis.

8.2 Predicting stopout using Delphi

8.2.1 Experimental setup

In order to run our datasets through Delphi, we performed the following:

107



1. Chose a few lead, lag combinations to run on Delphi. Since Delphi creates

many models, we only chose 3 datasets per cohort. We chose lead and lag

combinations which were difficult for logistic regression to predict so we could

see if Delphi would perform better. We chose the following combinations: lead

of 13, lag of 1; lead of 3, lag of 6; lead of 6, lag of 4.

2. Flattened each cohort’s train and test dataset to generate files which could be

passed to Delphi. We flattened in the same manner as described in logistic

regression section.

3. Ran the 12 datasets through Delphi. This gave us 12 models which performed

best on a mean cross validation prediction accuracy metric.

4. Evaluated these models on the basis of test dataset ROC AUC and cross vali-

dation ROC AUC performance.

8.3 Delphi results

The models created by Delphi attained AUCs very similar to those of our logistic

regression and HMM models. The best algorithm chosen by Delphi varied depending

on which lead, lag and cohort combination was chosen. The algorithms included

stochastic gradient descent, k nearest neighbors, logistic regression, support vector

machines and random forests.

For the two larger cohorts, passive collaborator and forum contributor, Delphi’s

models used logistic regression, stochastic gradient descent, support vector machines

and random forests. For each of the lead and lag combinations, the models’ results

were with 0.02 of our logistic regression results. This indicated that the predictive

power of these cohorts was not due to the type of model used. Rather, the strong

predictive accuracies achieved were caused by the interpretive features in the models.

As previously noted in Chapter 5, varying the features used, such as when using only

the self-proposed, self-extracted features rather than the self-proposed, self-extracted

features and crowd-proposed, self-extracted features, significantly changed the results.
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These findings led us to conclude that focusing on better features provides more

leverage in MOOC data science than does fine-tuning models.

For the smaller wiki contributor and fully collaborative cohorts, Delphi’s models

provided significantly better accuracy. For example, for the wiki contributor cohort,

all three lead and lag combinations’ models produces AUCs greater than 0.85! This

indicated that for these cohorts, the type of model matters a great deal. We conclude

that this is due to the small size of the cohorts, as some classifiers are able to more

gracefully handle less data. The best classifiers used to model these cohorts included

k nearest neighbors and stochastic gradient descent.

In Chapters 5 through Chapters 8 we have presented the models we used in stopout

prediction. In the next chapter, we present the framework used to accomplish building

these models at scale.
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Chapter 9

Distributed Computing

As described in the previous chapter, we planned on creating a large number of

predictive models. In order to scale such a large number of experiments, we needed

a parallelization framework to accomplish machine learning at scale, utilizing the

computing power of CSAIL’s openstack cloud.

In order to accomplish this, we modified a parallelization framework called DCAP

to run our experiments. DCAP is a master-slave architected system built in the ALFA

group that allows a user to manage the execution list of computational jobs [7]. The

list of jobs is called a taskfile. DCAP takes a taskfile and launches a server to which

clients can connect. Each time a client connects, the DCAP server sends it a job

(including a config file) from the taskfile. The client executes the job and sends the

result back to the master. This repeats until there are no more jobs to accomplish.

Figure 9-1 shows the flow of jobs.

We used DCAP to run a large suite of jobs on the cloud. This involved generating

taskfiles and config files for each experiment. In addition, we created scripts to launch

clients that will automatically connect to a server. We employed the eucalyptus API

to manage cloud nodes. Additionally, we created image snapshots containing the

datasets and the model creation code to run. The scripts instructed openstack to

launch nodes using the images containing the necessary libraries and datasets. Next,

the clients would automatically connect to the server and run jobs until all the tasks

were finished.
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Figure 9-1: The client-server architecture of DCAP. It is used to parallelize the
model prediction process.

112



In particular, we used DCAP to run all HMM and logistic regression on HMM

state jobs. These model variants are by far the most computational intensive. This

included several job launches as we progressively fine tuned our models. Each run

included additional modifications, such as training 10 HMMs per experiment to avoid

local maxima, and using feature-sets with dimensionality reduction through principal

component analysis. Usually, the runs include 84 jobs. This included both types of

models, all 4 cohorts, and 14 different hidden variable supports. Due to computational

complexity of the algorithms, the final run included 84 jobs, used 22 12-core machines

and took around 1 week to finish. Running experiments at this scale would not have

been possible if it were not for cloud computing. Using DCAP to do so saved a lot

of micro-managing, as everything was ran through scripts automatically.
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Chapter 10

Conclusion

10.1 Data science discussion

For a successful data science endeavor, there are many critical components. As pre-

sented in this thesis, there are numerous challenges in assembling features and a

number of data representations one could try and a number of ways to model. One

has to be thorough and systematic, otherwise one will never know if one has got the

best prediction capability (thorough in feature definition, model exploration).

Feature engineering One has to be meticulous from the data up – any vague

assumptions, quick and dirty data conditioning or preparation will create weak foun-

dations for your modeling and analyses. Many times painstaking manual labor is

required - such as manually matching up pset deadlines, etc. You need to be ready to

think creatively as you brainstorm and extract features, and be flexible in the ways

you assemble them. For example, utilizing the crowd is much richer than just your

own expertise.

Machine learning/modeling at scale There are many ways to represent the ex-

tracted features data- with or without PCA, temporal and non-temporal, discretized

and non discretized. Additionally there are a number of modeling choices - discrimi-

native, generative or mixed models which include many types of classifiers. One has
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to consider a number of them to enable insights at scale. The alternative results in a

much smaller scope with more limited results.

Our ability to build 10,000 models relied on us first building the cloud scale plat-

forms. This is especially true as the machine learning process includes iterations over

data definitions, features and cohort definitions. Only through a large scale computa-

tional framework are these multiple iterations possible. Throughout our analysis we

ran on hundreds of nodes simultaneously, using the DCAP and Delphi frameworks.

Transfer learning prospects In order to have a lasting impact on MOOC data

science, you have to think big! Investing resources only in investigating stopout for

one course limits the impacts of the results. With this in mind, we set out to create

a reusable, scalable methodology.

From the beginning of our research, we envisioned that all the software built upon

the shared data schema MOOCdb will be open source and will be re-used for a large

cohort of courses. We spent time to ensure the shared data schema captures and

generalizes to courses of different types, from different universities and from different

platforms.

10.2 Research findings

After applying the steps outlined in the previous chapters, we were successfully able to

predict stopout for the Fall 2012 offering of 6.002x. Through analysis of the resulting

models, we uncovered a myriad of findings, including the following:

• Stopout prediction is a tractable problem. Our models achieved an AUC (re-

ceiver operating characteristic area-under-the-curve) as high as 0.95 (and gen-

erally ∼0.88) when predicting one week in advance. Even with more difficult

prediction problems, such as predicting student stopout at the end of the course

with only one week’s data, our models attained AUCs of ∼0.7. This suggests

that early predictors of stopout exist.
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• A crowd familar with MOOCs is capable of proposing sophisticated features

which are highly predictive. The features brainstormed by our crowd-sourcing

efforts were actually more useful than those we thought of independently. Ad-

ditionally, the crowd is very willing to participate in MOOC research. These

observations suggest the education-informed crowd is a realistic source of mod-

eling assistance and more efforts should be made to engage it.

• Overall, features which incorporate student problem submission engagement

are the most predictive of stopout. As our prediction problem defined stopout

using problem submissions, this result is not particularly surprising. however

submission engagement is an arguably good definition.

• In general, complex, sophisticated features, such the percentile of a student

when compared to other students (x202, Table 3.2), which relates students to

peers, and lab grade over time(x207, Table 3.2), which has a temporal trend, are

more predictive than simple features, such a count of submissions (x7, Table

3.1).

• Features involving inter-student collaboration, such as the class forum and Wiki,

can be useful in stopout prediction. It is likely that the quality and content of a

student’s questions or knowledge are more important than strict collaboration

frequency. We found that, in particular, the length of forum posts (x5, Table

3.1) is predictive, but the number of posts (x3, Table 3.1) and number of forum

responses (x201, Table 3.2) is not. The role of the collaborative mechanism (i.e.

Wiki or forum) also appears to be distinctive since, in contrast to forum post

length, Wiki edits have almost no predictive power.

• For almost every prediction week, our models find only the most recent four

weeks of data predictive.

• Taking the extra effort to extract complex predictive features that require rel-

ative comparison or temporal trends, rather than employing more direct co-

variates of behavior, or even trying multiple modeling techniques, is the most

117



important contributor to successful MOOC data science. While we constructed

many models with a variety of techniques, we found consistent accuracy aris-

ing across techniques which was dependent on the features we used. Using

more informative features yielded superior accuracy that was consistent across

modeling techniques. Very seldom did the modeling technique itself make a

difference. A significant exception to this is when the model only has a small

number of students (for example,∼ less than 400) to learn from. Some models

perform notably better than others on less data.

• Employing dimensionality reduction, such as principal component analysis (PCA),

generally did not improve the predictive accuracy of our models. However, it

did significantly speed up our model generation running time. We applied PCA

only to discretized data to train hidden markov models (HMMs).

• By using HMMs we gain support for our hypothesis that the observations we

gather about students reflect a hidden state or ‘’latent variable’. We speculate

that this state is related to engagement or interest. Our models uncovered

different quantities of modes for this hidden state which depend on the cohort of

students. For some cohorts, such as passive collaborator students, the number

of modes seems to exceed 29, as increasing this number in our HMMs never

stopped producing better results. However, for forum contributor cohort, the

number of modes is only around 11.

10.3 Contributions

The strongest contribution of this thesis is the design, development and demonstration

of a stopout prediction methodology, end to end, from raw source data to model

analysis. The methodology is painstakingly meticulous about every detail of data

preparation, feature engineering, model evaluation and outcome analysis. As a result

of this thoroughness, research of stopout analysis exits an immature stage of ad-hoc

data preparation and results, with insufficient details to allow replication or system-
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atic advancement of knowledge. We document a methodology that is reproducable

and scalable, and that will soon be applied on a number of additional edX and Cours-

era courses with the expectation of similar success. In addition, the methodology and

software will shortly be released to interested educational researchers.

This methodology included:

• Successfully predicted stopout for the Fall 2012 offering of 6.002x.

• Extracted 28 sophisticated, interpretive features which combine student usage

patterns from different data sources. This included leveraging the collective

brain-power of the crowd.

• Utilized these features to create a series of temporal and non-temporal feature-

sets for use in predictive modelling. These featuresets included techniques such

as PCA.

• Created over 10,000 comprehensive, predictive models using a variety of state-

of-the-art techniques, such as logistic regression, HMMs, K-nearest-neighbors,

etc.

• Built and demonstrated a scalable, distributed, modular and reusable frame-

work to accomplish these steps iteratively, using DCAP and Delphi.
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